

QMA(Shanghai) Electric Co., Ltd

1

A1200 Elevator Inverter

User Manual

Contents

Chapter 1 Product Introduction
1.1 Product Introduction
1.2 Nameplate4
1.3 Model Numbering Description4
1.4 Application Environment
Chapter 2 Wiring
2.1 Basic Wiring Diagram
2.2 Terminal & Wiring of Main Circuit7
2.3 Terminals & Wiring of Control Circuit :
2.4 DI Numerical Input Terminal:
Chapter 3 PG Card Options
3.1 Table of A1200 Elevator Inverter PG Card Options
3.2 Wiring PG Card of Interface Board of Rotary Encoder for Elevator
Chapter 4 Inverter Operation and Commissioning
4.1 Terms of Elevator Inverter
4.2 Operation and Display Interface
4.3 Function Code Review and Operation
Chapter 5 Function Parameter Table
5.1 Description of Function Codes
5.2 Function Parameter Table
Chapter 6 Parameter Description
Chapter 7 Application & Debugging
7.1 Preset Speed Control Mode
Chapter 8 Troubleshooting
8.1 Faults and Troubleshooting95
8.2 Common Faults and Handling Methods100
Chapter 9 Specification
9.1 Major Parameters of A1200 Series Inverter 101
9.2 Technical Specification

Chapter 1 Product Introduction

1.1 Product Introduction

Thank you for purchasing Qma A1200 elevator inverter, which is a general purpose current torque vector control inverter characterized by high performance and ultra low noise. For the best use of this inverter and for your safety, please read this manual carefully. If you encounter any problems not described in the manual during use, please contact your local dealer or our technical personnel of Engineering Department. Our professionals are always pleased to serve you. You can feel free to continue to use A1200 elevator inverter.

[Notice for Use]:

A1200 is developed by Qma. In this manual, "Danger" and "Caution" paragraphs contain important safety precautions that shall be paid attention to during transportation, installation, operation and examination of the inverter.

[Danger]: Incorrect use of this inverter may result in personal injury and death. Do not dismount or install inverter or change its internal connection, wiring or component by yourself.

[Caution]: Incorrect use of this product may cause damages to the inverter or its mechanical systems.

[Danger]:

- After turning off the power, do not touch circuit board or components before CHARGE indicator goes off.
- Do not dismount or install inverter or change its internal connection, wiring or component by yourself.
- Make sure the power is off before wiring; do not check components, parts or signals on the circuit board while the inverter is running.
- Earthing terminals of the inverter must be grounded properly. Three grounding modes for 220V, special earthing for 440V.

[Caution]:

• Never perform withstanding voltage test for components or parts in the inverter, otherwise this may cause damages to these semi-conductor parts due to high voltage.

• Never wire output terminals U, V and W of the inverter to input terminals (R, S, T) of AC power supply.

• Component COMOSIC of inverter circuit board is susceptible to static electricity influence and damages. Do not touch the main circuit board.

[During operation]:

Danger

• Never remove front cover under power-on state to avoid electric shock; otherwise, this may cause personal injury.

• Never get close to the machine to avoid danger after motor stops working as it will automatically restart again if automatic restart function is enabled.

• Stop switch will be effected only after setting. Please note that it is different from emergency stop switch in usage.

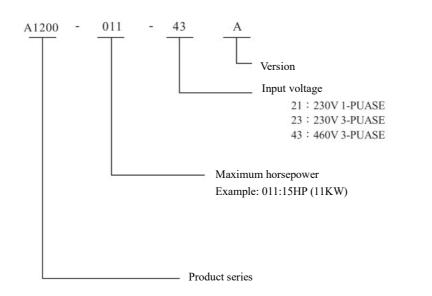
Caution

• Never touch heating elements like heat sink and braking resistor to avoid electric shock; otherwise, it may cause personal injury.

• The inverter can be easily changed from low speed to high speed. Please input the allowable range of motor and machinery.

• When using brake, etc., please pay attention to relevant setting.

• Never check signals of circuit board when the inverter is running.

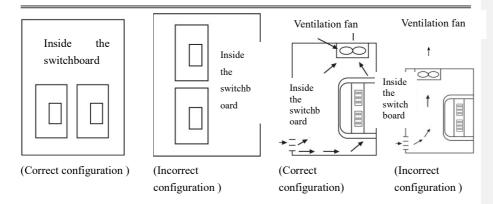

• Inverter has been set in the factory, so please do not adjust it arbitrarily.

1.2 Nameplate

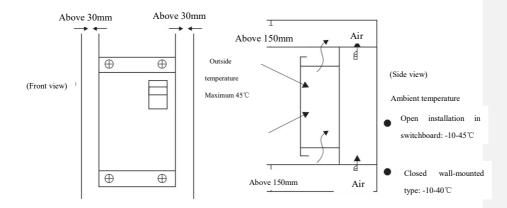
Take 11kw 380V as an example	
Model———→	((Model: A1200-011-43A
Input power——→	Input: 3PH 380V 50/60Hz
Output power———→	Output: 3PH AC0-440V 11KW 27A
Output frequency——→	Freq.Range: 0-500Hz
Barcode———→	A120001143A17031680
Production control code \rightarrow	

4

1.3 Model Numbering Description



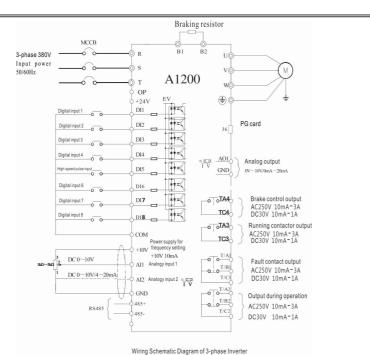
1.4 Application Environment


As the installation environment has direct influence on the performance and service life of the inverter, following conditions must be met.

- Ambient environment: Open installation in switchboard (-10-45°C/+14-113° F) Closed wall-mounted type (-10-40°C/+14-104° F)
- Avoid rain or humid environment. Avoid direct sunlight.
- Prevent erosion of oil mist and salt.
 Avoid corrosive liquid and gas.
- Prevent dust, batting and metal powder from entering the inverter.
- Away from radioactive substance and combustible material.
- Prevent electromagnetic interference (welding machine, power machine).
- Prevent vibration (punch press). If it is unavoidable, please install a shockproof gasket to reduce vibration.

• When multiple inverters are installed in a control cabinet, install them at proper positions for heat dissipation. In addition, please install a heat radiation fan to make the ambient temperature around the inverter lower than 450°C.

- Installing the inverter with its front surface forward and top part upward for heat radiation.
- Installation space must be in accordance with following regulations: When the inverter is installed inside the switchboard or if conditions permit, remove upper dustproof cover of the inverter for cooling and heat radiation.

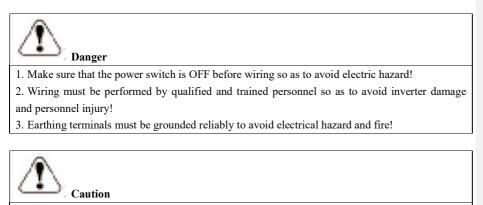

Chapter 2 Wiring

6

2.1 Basic Wiring Diagram

• Wiring Schematic Diagram of 3-phase Inverter

A1200 Series



Note:

1) refers to main circuit terminal, O refers to control circuit terminal.

2) Select braking resistor as required by users. Please refer to Braking Resistor Selection Guide for detail.

2.2 Terminal & Wiring of Main Circuit

1. Confirm that input power's rated values are identical to that of the inverter; otherwise, it may result in inverter damage!

2. Confirm that motor matches to the inverter; otherwise, it may damage motor or trigger inverter protection!

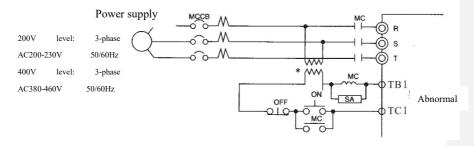
Never connect power supply to terminals U, V and W to avoid inverter damage!
 Do not connect braking resistor to DC bus terminals (+) & (-) directly; otherwise this may cause fire.

Wiring of main circuit

This part introduces main circuit I/O wiring and grounding wire.

Wiring on input side of main circuit

Installation of wiring circuit breaker

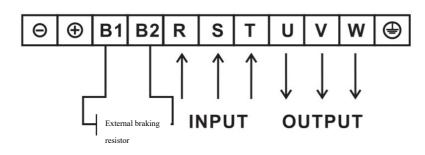

A wiring circuit breaker (MCCB) corresponding to inverter power is required between the power supply and the input terminals.

• The capacity of MCCB shall be 2 times that of the rated current of the inverter.

• The time characteristics of MCCB must meet the time characteristics of the overheating protection of the inverter (150901 rated output current/1 minute)

• If single MCCB is shared by two or more inverters or other device, the contact of fault output shall be connected to contractor that will cut the power as shown in the figure below.

Comment [A1]: 这个地方应该是个比例值,请确认原文


* When 400V level is selected, 400/200V transformer should be connected.

Setting Wiring Circuit Breaker

Function	Terminal	A7000		
Power input of main circuit	R, S, T	2.2-45KW		
Inverter output	U, V, W	2.2-45KW		
Connecting to braking resistor	B1, B2 (PB, +)	2.2-45KW		
Connecting baking unit	\oplus, Θ	37-45KW		
Grounding	Ð	2.2-45KW		

8

■ Functions of Main Circuit Terminal

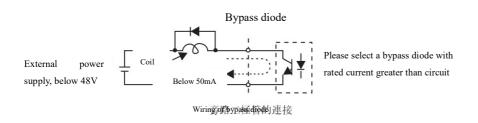
Example: A1200-011-43A

2.3 Terminals & Wiring of Control Circuit :

1) Layout drawing of control circuit terminals is as follows:

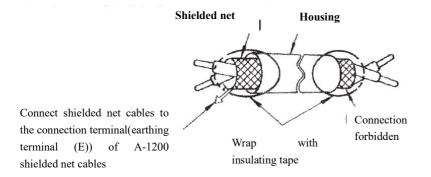
-10V	А	.11	А	.12	A	D1	DI2	Γ	DI4	DI	6 E	91 8	+2	4V	0	Р	T/	A1	T/]	B1	T/0	C1	Τ/.	A3	Т/С	23
48:	5+	48:	5-	GN	D	DI	1 I	013	D	15	DI 7	со	М	CO	М	СМ	Ε	T/A	.2	T/B	2	T/C	22	T/A	.4	T/C4

Туре	Terminal Symbol	Terminal Name	Terminal Function
Power supply	+10V-GND	External+10V	Offers +10 power source. Maximum output current: 10mA; generally used as a working power supply for external potentiometer. Resistance range of potentiometer: $1k\Omega$ - $1k\Omega$
	+24V-COM	External+24V	Offers +24 power source, generally used as a working power supply for numeric input and output terminals and an external sensor power supply. Maximum output current: 200mA.
	OP	External power supply input terminal	Default setting: connect to 24V power supply. When driving DI1 and D18 with external power supply, connect it to the external power supply and pull out the connector between OP and +24V.
Analog input	AI1-GND	Analog input terminal 1	1. Input voltage range: DC OV_10V2. Input impedance: 22k Ω
	AI2-GND	Analog input terminal 2	1. Input range: DC OV 10V/4mA 20mA, determined by jumper wire on control


2) Function of control circuit terminals:

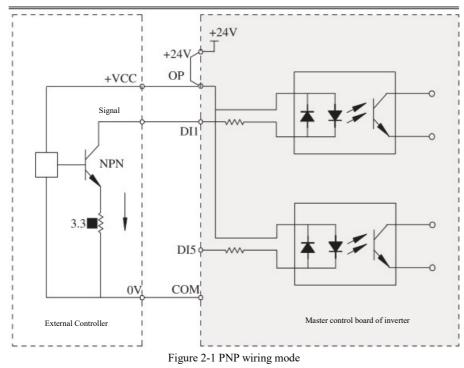
A1200 Series

			board			
			2. Input impedance: voltage input $22k\Omega$,			
			current input 500Ω			
	DI1	Numerical input 1	1. Optocoupler isolation, compatible with			
	DI2	Numerical input 2	bipolar input			
	DI3	Numerical input 3	2. Input impedance: 2.4kΩ			
	DI4	Numerical input 4	3. Voltage range under level input: 9V-30V			
	DI5	High-speed pulse	In addition to features of DI1-DI8, it can be			
		input terminal	used as high-speed pulse input channel as			
Numerical			well. Maximum input frequency: 100kHZ			
input	DI6	Numerical input 6	1. Optocoupler isolation, compatible with			
1	DI7	Numerical input 7	bipolar input			
	DI8	Numerical input 8	2. Input impedance: 2.4kΩ			
			3. Voltage range under level input: 9V-30V			
Analog output	AO1-GND	Analog output 1	Determine voltage or current output by the			
			jumper wire on control board.			
			Output voltage range: 0V-10V			
			Output current range: 0mA-20mA			
Relay output	T/A1-T/C1	NO terminal	Contact driving capacity: AC250V, 3A,			
	T/B1-T/C1	NC terminal	СОSФ=0.4.			
	T/A2-T/C2	NO terminal	DC 30V, 1A			
]	T/B2-T/C2	NC terminal	Contact driving capacity: AC250V, 3A,			
	T/A3-T/C3	NO terminal	COSØ=0.4			
	T/A4-T/C4	NC terminal	DC 30V, 1A			
Communicatio	485+	485 differential	Standard RS485 communication port			
n		signal (+)				
	485—	485 differential				
		signal (-)				


3) Wiring of control circuit terminals:

- For inductive loads like coil for driving relay, please be sure to insert bypass diode as shown in the figure below.
- Separate control circuit cables from cables of main circuit and other power cables or power supply cables in wiring.

- Please use twisted shielded cables or twisted pair cables to avoid malfunctions caused by interference. Please refer to the figure below for cable end treatment. The wiring distance should be less than 50m
- Please connect shielded net cables to earthing terminal (E).
- Wrap shielded net cables with insulating tape to prevent shielded net cables from contacting other signal cables and device housing.


Wrapping ends of shielded twisted pair cables

2.4 DI Numerical Input Terminal:

Shielded cables are generally used and the wiring distance should be as short as possible and in a maximum of 20m. When adopting active drive, necessary filtration measures must be taken to prevent interference to power supply. Contact control mode is recommended.

PNP wiring mode

A1200 Series

This is the most common wiring method. When using external power supply, be sure to pull out the connector between OP and +24V (+). Then the external power supply 0V will be connected to corresponding DI terminal through inverter control contact.

♦ Note: Under this wiring mode, DI terminals of different inverters can not be connected in parallel, otherwise this may result in misoperation of DI; if it is required to connect DI terminals of different inverters in parallel, a diode must be wired at DI terminal ((+) connects to DI) in series. Diode should meet the following requirements: IF>10mA, UF<1V, as shown in the figure below.</p>

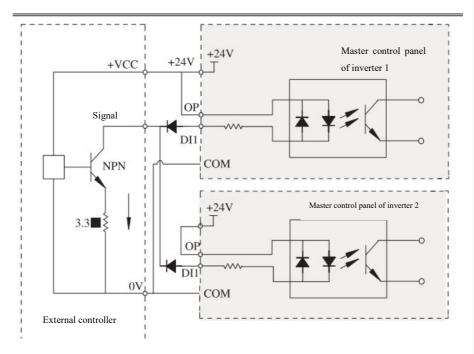


Figure 2-2 PNP Wiring Mode of DI Terminals of Multiple Inverters in Parallel Connection

Chapter 3 PG Card Options

3.1 Table of A1200 Elevator Inverter PG Card Options

Nam	ie	Model	Funct	ion	Remarks
External	braking	CDBR	External	braking	See the appendixBraking
unit			units, with	$\operatorname{power} \geqslant$	Resistor Selection Guide for
			37kW		details
PG card		QMA-PG-B	Rotary	encoder	Provide 15V power supply,
			interface	card,	applicable to push-pull or open
			frequency	division	collector output incremental
			output card		encoder; frequency division can
					be selected.
		QMA-PG-X	Rotary	encoder	Provide 5V power supply,
			interface	card,	applicable to line driver
			frequency	division	incremental encoder and UVW
			output card		encoder; frequency division
					signal OC output; frequency

A1200 Series

			division can be selected.
QMA-PG-C	Rotary	encoder	Provide 5V power supply; sin,
	interface	card,	cos encoder; frequency division
	frequency	division	signal OC output; frequency
	output card		division can be selected.
QMA-PG-D	Rotary	encoder	Provide 5V power supply; Endat
	interface	card,	encoder; frequency division
	frequency	division	signal OC output; frequency
	output card		division can be selected.

3.2 Wiring PG Card of Interface Board of Rotary Encoder for

Elevator

3.2.1 QMA-PG-B (applicable to incremental encoder with OC output and push-pull output used for induction motor)

1) Description of wiring

A1200 elevator inverter can be equipped with PG card with frequency division output and when wiring PG card, attentions shall be paid to the following matters:

a) Separate cables between encoder and PG from cables of control circuit and power circuit. Parallel cabling of short distance is forbidden.

b) Use shielded cables to wire between encoder and PG. Shielded layer shall be closer to one side of the inverter and connected to PE terminal (to prevent interference, only one terminal shall be grounded)

c) Encoder and PG shall be wired in a separate pipe and metal pipe housing must be grounded reliably.

Figure 3.1: PG Card Wiring

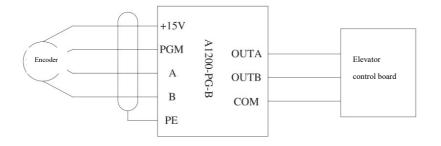


Figure 3.1 PG Card Wiring of QMA-PG-B Induction Motor

2) Technical parameters

	Table 3.2 Technical Parameters										
Terminal	Function	Response	Output	Output	Frequency						
Symbol	Symbol		Impedance	Current	Division						
					Range						
+15V,	Provide power	-	About 300Ω	300mA	-						
COM	supply for encoder										
PGA,	Encoder signal	0-60kHz	-	-	-						
PGB	access										
OUT-A	Frequency division	0-60kHz	About 30Ω	100mA	1-64						
OUT-B	signal output										

3) Description of terminals and DIP

PG card includes seven user wiring terminals, of which +15PG and COM are as working power output terminals of encoder;

PGA and PGB are signal input terminals of encoder; OUT-A, OUT-B and COM are frequency division signal output terminals; PE is the shielded cable wiring terminal (PE in PG card is not grounded. Therefore, PE must be grounded when it is used.)

3.2.4 DIP switch: It is used to set the frequency division factor and filter function for frequency division output of PG card. There are 8 DIP switches in total.

Setting frequency division factor: 8 DIP bits correspond to different binary bits respectively. DIP switch indicated with "1" corresponds to low binary bit, while DIP indicated with "8" corresponds to high binary bit. When DIP switch is switched to ON, this bit is enabled and displayed as 1. Otherwise, it will be "0". An example is given in the table below:

	Frequenc	y Divisio	on Factor	Setting Sv	witch			
Frequency division factor	8	7	6	5	4	3	2	1
No output	0	0	0	0	0	0	0	0
1 frequency division	0	0	0	0	0	0	0	1
output	0	0	0	0	0	0	1	0
2 frequency division output	0	0	0	0	0	0	1	0
3 frequency division output	0	0	0	0	0	0	1	1
•								
•	•	•		•	•		•	
•	•		•	•	•			•
64 frequency division output	0	0	1	1	1	1	1	1

Table 3.3 Function Setting of DIP Switch

3.2.2 A1200-PG-X (applicable to UVW encoder of synchronous motor and line driver incremental encoder of induction motor)

1) Technical parameters

Terminal	Function	Response	Output	Output	Frequency
Symbol		Speed	Impedance	Current	Division

A1200 Series

					Range
VCC, GND	Provide power	-	About 300Ω	300mA	-
	supply for encoder				
A+, B+, A-, B-	Encoder signal	0-80kHz	-	-	-
U+, V+, W+,	access				
U-, V-, W-,					
OUT-A,	Frequency division	0-80kHz	About 30Ω	100mA	1
OUT-B, COM	signal output				

2) Description of terminals

PG card has 15 user wiring terminals, of which VCC and GND are output terminals of working power supply of encoder; A+, B+, A-, B-, U+, V+, W+, U-, V- and W- are signal input terminals of encoder; OUT-A, OUT-B and COM are output terminals of frequency division signal.

3) QMA-PG-X is connected to UVW encoder through D type 15-pin (DB15) connector. Definition of all pins of the connector is as follows:

Model of PG Adapter Card	Definition of Pins of DB15	Applicable Encoder
QMA-PG-X	A+ A- B+ NC W+ U+ W- U+ W- GND NC VC B- NC VC NC NC NC	UVW encoder

3.2.3 A1200-PG-C (applicable to ERN1387 sin/cos encoder used for synchronous motor)

1) QMA-PG-C is connected to ERN1387 sin/cos encoder through D type 15-pin (DB15) connector.

Definition of all connectors as follows:

Model of PG Adapter Card	Definition of Pins of DB15	Applicable Encoder
QMA-PG-C	$B \cdot \qquad $	ERN1387 sin/cos encoder

2) Description of terminals

PG card has 15 user wiring terminals, of which VCC and GND are output terminals of working power supply of encoder; A+, B+, A-, B-, Z+, Z-, C+, C-, D+ and D- are signal input terminals of encoder; OUT-A, OUT-B and COM are frequency division signal output terminals.

3.2.4 A1200-PG-C (applicable to ECN1313 Endat encoder used for synchronous motor)

1) QMA-PG-D is connected to ECN1313 Endat encoder by D type 15-pin (DB15) connector. Definitions of all pins of the connector is as follows:

Model of PG Adapter Card	Definition of Pins of DB15	Applicable Encoder
QMA-PG-D	B. NC NC NC NC NC NC NC NC NC NC	ECN1313Endat encoder

2) Description of terminals

PG card has 15 user wiring terminals, of which VCC and GND are output terminals of working power supply of encoder; A+, B+, A-, B-, NC, NC, CLK+, CLK-, DATA+ and DATA- are signal input terminals of encoder; OUT-A, OUT-B and COM are output terminals of frequency division signal.

Chapter 4 Inverter Operation and Commissioning

Overview: This chapter introduces the keypad operation and function code setting of operation panel of A1200 elevator inverter.

4.1 Terms of Elevator Inverter

Basic terms of A1200 elevator inverter include those ones for operation mode and system status. 4.1.1 Operation mode

The operation modes of inverter refer to which kind of method will be adopted to accept running commands and speed commands. A1200 elevator inverter can only run in one of the two control modes said below.

Operation panel control: Control inverter output through RUN and STOP of operation panel.

Terminal command control: Running commands and running speed are controlled by multi-function input terminals through input signals.

4.1.2 Control modes

A1200 elevator inverter supports three control modes

1) Sensorless vector control (SVC)

2) Feedback vector control (VC)

3) V/F control

4.1.3 Running modes

Autotuning mode: A1200 elevator inverter provides autotuning mode for a motor with load or without load. Please refer to description of parameter P1-11 for detail.

Normal running mode: Running under operation panel control and running under analog setting Preset speed running: Under this mode, running speed is controlled by preset speeds.

Inverter can run only in one mode all the time.

4.1.4 Operation status

When the inverter is powered on, A1200 elevator inverter has four operation statuses: Stop status, programmable status, running status, fault alarm status.

Stop status:

After powered on again or stop after the running command ends, the inverter stays in the standby status until it receives a new running command. At this time, the running indicator goes off, LED contents flash as a whole and ">>>" key can be pressed down to display different parameters circularly.

Programmable status:

User can check and set inverter parameters through operation panel. This means that inverter is in the programmable status,

Running status (elevator running):

When the inverter is in running status, the running indicator is on and contents displayed on LED are not flashing.

Fault alarm status:

Refer to the status of inverter under fault, with fault codes displayed.

4.2 Operation and Display Interface

The keypad with LED display is a standard part of A1200 elevator inverter. A user may operate A1200 elevator inverter by keypad through parameter setting, status monitoring, start/stop operation, etc.

The keypad appearance and function area is as shown in Figure 4 - 1.

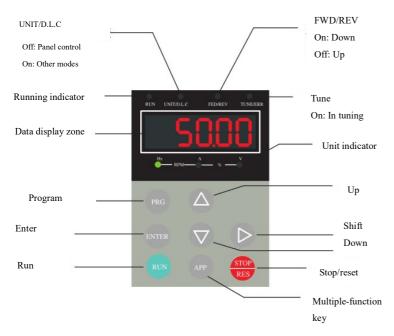
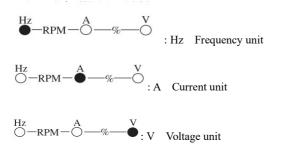


Figure 4-1 Operation Panel

1) Function indicator

• RUN: When the indicator is on, it means the inverter is in running status.

• UNIT/D.L.C: Running mode indicator. When the indicator is on, it means that the inverter is under operation panel control mode. Otherwise, it means that the inverter is under terminal control mode.


• FWD/REV: Running direction indicator. When the indicator is on, it means that the inverter goes down. Otherwise, the inverter goes up.

• TUNE: Tuning indicator. When the indicator is on, it means the inverter is in tuning status.

2) Digital display area

5-digit LED can be used to display the setting frequency, output frequency and various monitoring data and alarm codes.

3) Unit indicator

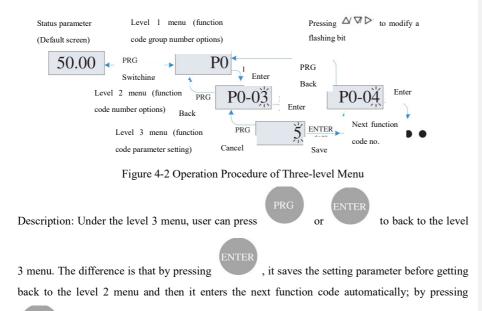
$$\overset{\text{Hz}}{\bullet}$$
 -RPM - $\overset{\text{A}}{\bullet}$ - $\overset{\text{V}}{\sim}$: RPM, unit of rotation speed

$$\bigcirc$$
 -RPM - \clubsuit - $\%$ - $\%$: % Percentage

4) Functions of buttons of keypad

Button	Name	Function			
PRG	Programmable	Enter and exit the level 1 menu. Delete parameters quickly.			
ENTER	Enter	Enter the menu step by step, set and enter parameters.			
	Up	Increase figure or function code progressively.			
\bigtriangledown	Down	Reduce figure or function code progressively.			
	Shift	Select the display parameters of LED circularly under stop status and running status; when modifying parameters, it can be used to select the bit of parameters.			

RUN	Run	Press this button to start the inverter if the keypad control is enabled.
STOP RES	Stop/Reset	Press this button to stop the inveter under running status or reset the operation in fault alarm status.
АРР	Multi-function Key	Display and hide fault message


4.3 Function Code Review and Operation

4.3.1 Operation procedure of three-level menu

PRG

A1200 elevator inverter adopts three-level menu to set parameters through operation panel, facilitating review and modification of function codes and parameters.

3-level menu: Function parameter group (level 1) \rightarrow function codes (level 2) \rightarrow function code setting(level 3). See figure 4-2 for operation procedure.

, it will directly return to the level 2 menu without saving parameters and maintain current function code.

Example: Changing function code P0-04 from 50.00Hz to 15.00Hz (flashing bit is indicated in bold type).

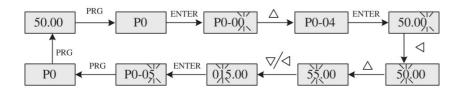


Figure 4-3 Example of Parameter Editing

Under the level 3 menu, if there is no flashing bit, it means that this function code can not be modified. Possible causes:

1) The function code is a parameter that can not be modified, such as actual detection parameter, operation log parameter.

2) This function code can not be modified under the running status. For modification, it is required to stop the inverter.

4.3.2 Operation method of status display parameters

Press down the shift button to switch over status parameters:

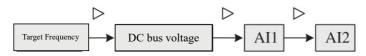


Figure 4-4 Switching Status Parameters

A1200 elevator inverter adopts LED to display various status parameters under stop status or running status. Specific parameters to be displayed shall be selected according to the binary bit of function code P8-01 (running display parameter) and P8-02 (stop display parameter). Moreover,

user may, through the shift button V, display status parameters under stop or running status circularly.

When A1200 elevator inverter is under stop status, user can press \lor to display its eight stop status parameters circularly, which respectively are: Target linear speed, target frequency, DC bus voltage, AI1, AI2, car load (%), etc. user can select values to be displayed according to bit by

P8-02 (binary of conversion bit), and press \lor to display selected parameters in a sequence circularly.

13 running parameters of inverter under the running status: Load speed, running frequency, target frequency, DC bus voltage, output voltage, output current, AI1, AI2, car load (%), start compensation current (%), operating torque current (%), etc. Select parameters to be displayed

according to bit by P8-01 (binary of conversion bit) and press \mathbf{V} to display selected parameters in a sequence circularly.

1	1	5			
Function	Name	Setting Range	Minimum Unit	Default	Operational
code					Properties
	Running	1-32767			

	Parameter	Bit0: Load Speed			
	Display	Bit1: Running Frequency			
		Bit2: Target Frequency			
		Bit3: DC Bus Voltage			
P 8-01		Bit4: Output Voltage	1	32767	
		Bit5: Output Current			
		Bit6: AI1			
		Bit7: AI2			
		Bit8: Car load (%)			
		Bit9: Start Compensation Current			
		(%)			
		Bit10: Operating Torque Current (%)			
		Bit11: Input Status			
		Bit12: Output Status			
	Stop	1-255			
	Parameter	Bit0: Target Load Speed			
	Display	Bit1: Target Frequency			
		Bit2: DC Bus Voltage	1	255	
P8-02		Bit3: AI1			
		Bit4: AI2			
		Bit5: Car Load (%)			
		Bit6: Input Status			
		Bit7: Output status			

4.3.3 Read fault message

In the event of invert fault, fault code will be displayed on the panel. Users, through the fault code, can judge possible causes for fault and troubleshoot it as soon as possible.

A1200 elevator inverter can save the latest 11 fault codes and record the frequency, current, bus voltage, status of numeric input terminal and numeric output terminal upon occurrence of the last three faults. See figure 4-5:

Stop parameter display

Figure 4-5 Method to View Fault Message

4.3.4 Monitor the status of numeric input and output terminal

During running, the inverter shall monitor the status of numeric input and output terminals. Please see Chapter 6 P8-00 Parameter Description for detail.

4.4 Password Setting

For protecting parameters more effectively, the inverter provides password protection for parameters.

The following shows the process to change the password to 12345.

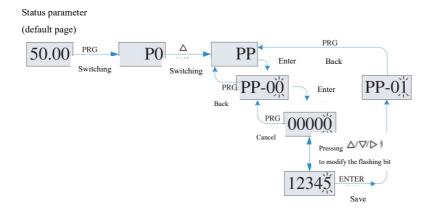


Figure 4-6 Password Setting Procedure

If a user password is set(PP-00 parameter is not zero) and when a user presses to enter the function code editing status, the system will first enter the user password verification and login status, displayed as "------". For entering the system, operators are required to enter correct user password. In addition, manufacturers are also required to input correct manufacturer password for entering the manufacturer parameter setting area. (Note: Do not change the default parameter as wrong parameter setting may result in inverter fault or even damages.)

User can modify a user password that has not been locked at any time, and the last password entered shall be considered as the user password.

For disabling password protection function, user shall enter the system by password and set PP-00 as 0; if PP-00 is not set as 0 when the inverter is powered on, then this parameter is protected by passwords.

Chapter 5 Function Parameter Table

5.1 Description of Function Codes

1. Based on the function of function parameters, A1200 elevator inverter includes 18 groups of function codes, such as P0-P9, PA-PD, PU, PJ, PF and PP, each group having multiple function codes. Function codes are displayed in three-level menu. Words "PX-XX" mentioned in other parts in this manual refer to No."XX" function code of the group "X". For example, "P9-08" refers to the No.8 function code of the group P9.

In order to set function codes, on operation panel, the number of function group corresponds to the level 1 menu, the number of function code corresponds to the level 2 menu and function code parameter corresponds to the level 3 menu.

2. All columns of function parameter table are described as follows:

The first column "Function code": No. of the function parameter group and parameter; the second

column "Name": Complete names of function parameters; the third column "Setting range": Range of effective setting value, displayed by LED; the fourth column "Minimum Unit": Minimum unit of function parameter setting values; the fifth column "Default": Default of function parameter; the sixth column "Property": Property of function parameters (whether the operation is allowed and operating conditions). Descriptions are as follows:

"": Refer to that A1200 elevator inverter is in the stop and running status and the parameter can be modified.

""Refer to that A1200 elevator inverter is in the running status and the parameter can not be modified.

"•• ": Refer to that this parameter value is the value recorded through actual test and can not be modified.

(In order to help user to avoid misoperation, the system has checked and restricted the change property of all parameters automatically)

3. "Default": Refer to the value of function code refreshed when reset to the default; however, actual detection value or recorded value can not be refreshed.

4. In order to protect parameters more effectively, the system has password protection function for function code (see Chapter 4).

5.2 Function Parameter Table

5.2.1 Grouping function parameters

After PRG is pressed down, all level 1 menus displayed by pressing UP/DOWN represent groups of function groups. Specific information is as follows:

P0	Basic Parameter	Р9	Fault and Protection Parameter
P1	Motor Parameter	PA	PG Parameter
P2	Vector Control Parameter	PB	Communication Parameter
P3	Start/stop Control Parameter	PC	Special Enhancement Function Parameter
P4	Input Function Parameter	PD	Special Function Parameter
P5	Output Function Parameter	PU	Monitoring Parameter
P6	Speed Parameter	PJ	Not Used Parameter
P7	Curve Parameter	PF	Default Parameter
P8	Keypad and Display Parameter	PP	User Parameter

5.2.2 Function parameter table

Function	Name	Setting Range	Minimum	Default	Property
code			Unit		
P0-Basic Parameter					
P0-00	Control Mode	0: Sensorless vector control (SVC)	1	1	®
		1: Feedback Vector control (VC)			
		2: V/F control			
P0-01	Command Options	0: Running command channels of	1	1	®
		operation panel			
		1: Terminal running command			

		channe	els			
P0-02	Speed Options	0: Nur	neric setting	1	1	®
	* *		et speed			
		2: AI1	•			
		3: AI2				
		4: Not	used			
		5: Spe	cial Preset speed			
P0-03	Numeric Setting	0.00-m	aximum frequency	0.01Hz	00.00Hz	
	Frequency					
P0-04	Running Direction	0: Sam	ie	1	0	®
		1: Opp	osite			
P0-05	Maximum Frequency	0.00Hz	z-90.00Hz	0.01Hz	50.00Hz	®
P0-06	Carrier Frequency	0.5kHz	z-16.0kHz	0.1kHz	Up to	
					specific	
					model	
P0-07	Carrier Frequency	0: Fixe	ed PWM	1	0	
	Adjustment	1: Ran	dom PWM			
			P1 Motor Parameter			
P0-00	Encoder Type		0: SIN/COS	1	1	®
			1: UVW			
			2: ABZ			
P1-01	Rated Power		0.4kW-110.0kW	0.1kW	Up to specific	R
					model	
P1-02	Rated Voltage		100-500V	1V	Up to specific	®
					model	
P1-03	Rated Current		0.00-655.00A	0.01A	Up to specific	®
					model	
P1-04	Rated Frequency		0-Maximum frequency	0.01Hz	50.00Hz	®
P1-05	Rated Rotation Speed		0-30000rpm	1rpm	1460rpm	®
P1-06	Not Used		0-65535	1	0	®
P1-07	Power Failure Ang	le of	0.0-359.9	0.1	0.0	®
	Synchronous Motor					
P1-08	Not Used		0-65535	1	0	®
P1-09	Current Filter Fact	or of	0.0-3.0	0.1	0	®
	Synchronous Motor					
P1-10	Encoder Parity		0-65535	1	0	®
P1-11	Motor tuning		0: No operation	1	0	®
			1: Tuning for a motor with			
			load			
			2: Tuning for a motor			
			without load			
P1-12	Not Used		0-65535	1	0	R
P1-13	Not Used		0-65535	1	0	®

D1 14	States Desister	0.001.0.(5.000.0	0.001.0	II. to modifie	
P1-14	Stator Resistor	0.001 Ω -65.000 Ω	0.001 Ω	Up to specific	
D1 15			0.001.0	model	
P1-15	Rotor Resistor of Induction	n $0.001 \Omega - 65.000 \Omega$	0.001 Ω	Up to specific	
D1 16	Motor	C 0.01 H (50.00 H	0.01 11	model	
P1-16	8	of 0.01mH-650.00mH	0.01mH	Up to specific	
D4 45	Induction Motor	2	0.1.77	model	
P1-17		of 0.01mH-6500.00mH	0.1mH	Up to specific	
	Induction Motor			model	
P1-18	Idling Current of Inductio	n 0.01A-650.00A	0.01A	Up to specific	
	Motor	-		model	
P1-19		of 0.01mH-650.00mH	0.01mH	0.01mH	R
	Synchronous Motor				
P1-20		of 0.01mH-650.00mH	0.01mH	0.01mH	®
	Synchronous Motor				
P1-21	Back Electromotive Force of	of 0-65535V	1V	0V	®
	Synchronous Motor				
P1-25	Motor Type	0: Induction motor	1	1	®
		1: Synchronous motor			
		P2 Vector Control Parameter		- E	
P2-00	Speed Loop Proportional Gain 1	0-100	1	35	
P2-01	Speed Loop Integral Time	0.01s-10.00s	0.01s	0.60s	
	1				
P2-02	Switching Frequency 1	0.00-P2-05	0.01Hz	2.00Hz	
P2-03	Speed Loop Proportional	0-100	1	30	
	Gain 2				
P2-04	Speed Loop Integral Time	0.01s-10.00s	0.01s	0.80	
	2				
P2-05	Switching Frequency 2	P2-02-Maximum frequency	0.01Hz	5.00Hz	
P2-06	Current Loop	10-500	1	60	
	Proportional Gain				
P2-07	Current Loop Integral	10-500	1	30	
	Gain				
P2-08	Upper Limit of Torque	0.0%-200.0%	0.1%	150.0%	
P2-09	Torque Acceleration Time	1ms-500ms	1ms	1ms	®
P2-10	Torque Deceleration time	1ms-500ms	1ms	350ms	®
P2-11	Speed Filter Factor	1-20	1	10	®
P2-12	Angle-free autotuning	0-65535V	1	0	®
	function	Bit1: 0 Disabled			
		1 Enabled			
		Bit2: 0 semi-automatic			
		1 Full-automatic			
		P3 Start/Stop Control Paramete	 r	1	1

P3-01	Torque Output Delay	0.00s-10.00s	0.01s	0.20s	®
P3-02	Brake Open Delay	0.20s-10.00s	0.01s	0.20s	®
P3-03	Zero Speed Delay	0.00s-10.00s	0.01s	0.30s	®
P3-04	Start Time	0.00s-10.00s	0.01s	0.00s	®
P3-05	Start Frequency Holding	0.00s-10.00s	0.01s	0.00s	®
	Time				
P3-06	Brake Release Delay	0.00s-10.00s	0.01s	0.20s	®
P3-07	Stop Zero Speed Delay	0.00s-10.00s	0.01s	0.30s	®
P3-08	Running Contactor Release Delay	0.00s-10.00s	0.01s	0.00s	®
P3-09	Start Pre-torque Setting	0: No pre-torque 1: DI setting 2: AI1 setting 3: AI2 setting 4: Enable pre-torque initial offset 5: No weighing compensation	1	0	®
P3-10	Pre-torque Shift	0.0%-100.0%	0.1%	48.0%	®
P3-11	Pre-torque Gain	0.00-1.50	0.01	0.60	R
P3-12	Initial Offset of	-100.0%-100.0%	0.1%	10.0%	®
r 3-12	Pre-torque	-100.076-100.076	0.170	10.070	
P3-13	DI Weighing Signal 1	0.0%-100.00%	0.1%	10.0%	R
P3-14	DI Weighing Signal 2	0.0%-100.00%	0.1%	30.0%	R
P3-15	DI Weighing Signal 3	0.0%-100.00%	0.1%	70.0%	®
P3-16	DI Weighing Signal 4	0.0%-100.00%	0.1%	90.0%	®
P3-17	Weighing Analog Input Filter Time	0.00s-1.00s	0.01s	0.10s	
P3-18	Corresponding Input of Weighing Analog Idling	0.00V-10.00V	0.01V	0.00V	
P3-19	Corresponding Input of Weighing Analog Full Load	0.00V-10.00V	0.01V	10.00V	
P3-20	Analog Weighing autotuning	0-100	1	0	
P3-21	Analog Weighing Autotuning Options	0: No operation 1: Autotuning permitted	1	0	
P3-22	Pre-torque Direction Reverse	0: Same 1: Reverse	1	0	
P3-24	Slipping Test Function Options	0: Disabled 1: Enabled	1	0	®
		P4 Input Function Parameter		1	I
P4-00	DI Filter Time	0.001s-0.200s	0.001	0.020s	
P4-01	DI1 Terminal Function	0: No function	1	1	®

P4-02	DI2 Terminal Function	1: Forward Command(FWD,	1	2	®
P4-03	DI3 Terminal Function	Up)	1	3	®
		2: Reverse Command (REV,			
		Down)			
P4-04	DI4 Terminal Function	3: Preset speed terminal 1	1	4	®
		4: Preset speed terminal 2			
		5: Preset speed terminal 3			
P4-05	DI5 Terminal Function	6: Fault reset	1	5	®
		7: Enable control			
		8: Inspection input			
P4-06	DI6 Terminal Function	9: Emergency input	1	6	®
		10: Running contactor			
		feedback			
P4-07	DI7 Terminal Function	11: Brake feedback	1	7	®
		12: Weighing terminal 1			
		13: Weighing terminal 2			
P4-08	DI8 Terminal Function	14: Weighing terminal 3	1	0	®
		15: Weighing terminal 4			
D 4 00		16: External fault		0	
P4-09	DI9 Terminal Function	17: Motor overheating	1	0	®
		18: Up speed judgment			
		19: Down speed judgment			
		20: Preset speed logic option			
		1			
P4-10	DI10 Terminal Function	21: Preset speed logic option	1	0	®
		2			
		22: Direct stop command			
		Terminal input range: 0-122;			
		if the hundreds place is 1, it			
D4 11		means this signal is normally		0	
P4-11	Not Used	closed and effective; 2 low	1	0	®
		places refer to terminal input			
		functions. If it is greater than			
		22, this function is disabled.			
		For example: 106. It means			
		this terminal function is the			
		fault reset function and the			
		signal is normally closed.			
P4-12	Not Used	0-65535	1	0	
P4-13	Preset Speeds Filter Time	0.000s-0.200s	0.001	0.020s	
	^	P5 Output Function Parameter	1	1	1
		*	1	15	

25.01		1.5.			
P5-01	TA4-TC4 Output	1: Running	1	6	®
		2: Zero speed running			
		(enabled under zero speed			
		running conditions)			
P5-02	TA3-TC3 Output	3: Zero speed signal (output at	1	5	®
		stop)			
		4: Fault signal			
		5: Running contactor output			_
P5-03	TA1-TB1-TC1 Output	control	1	4	®
		6: Brake output control			
		7: Advance door opening			
		signal			
		8: Bus undervoltage			
P5-04	TA2-TB2-TC2 Output	9: FDT 1 output	1	1	R
		10: FDT 2 output			
		11: Frequency reach			
		12: Overspeed output			
		14: Running time reach			
		15: Running ready			
		16: Contact adhesion output			
		control			
25.05	N	17: Releveling output			
P5-05	Not Used	18: Light load running output	1	0	®
		Note: FDT: Frequency			
		detection function. Detect the			
		output frequency of the			
		inverter itself, compare the			
		detection value with the			
		setting value and then control			
		corresponding output terminal			
		according to the comparison			
		result			
P5-06	Zero Speed Output Lag	0.000s-2.000s	1	0.000s	R
10.00	Time		-		
P5-07	AO Output	0: Running frequency	1	0	®
15 07	1.5 Output	1: Setting frequency	[•]		
		2: Output current			
		3: Output torque			
		4: Output voltage			
		5: AI1			
		6: AI2			
P5-08	AO Zero Offset	-100.0%-100.0%	0.1%	0.0%	
P5-09	AO Gain	-10.00-10.00	0.01	1.00	
[P6 Speed Parameter			

A1200 Series

P6-00	Preset Speed 0	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-01	Preset Speed 1	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-02	Preset Speed 2	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-03	Preset Speed 3	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-04	Preset Speed 4	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-05	Preset Speed 5	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-06	Preset Speed 6	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-07	Preset Speed 7	0-Maximum frequency	0.01Hz	0.00Hz	®
P6-08	Preset Speed 0	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-09	Preset Speed 1	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-10	Preset Speed 2	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-11	Preset Speed 3	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-12	Preset Speed 4	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-13	Preset Speed 5	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-14	Preset Speed 6	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-15	Preset Speed 7	1-4	1	1	®
	Acceleration/Deceleration				
	Curve				
P6-16	Inspection Speed	0-7	1	0	®
P6-17	Power Failure Emergency	0: No operation	1	0	®
	Running	1: UPS operation			
		2: Power supply by 48v			
		battery			
P6-18	Minimum Input of Analog	0.00V-10.00V	0.01V	0.00V	
P6-19	Corresponding Setting of	0.0%-100.0%	0.1%	0.0%	
	Minimum Input of Analog				
P6-20	Maximum Input of	0.00V-10.00V	0.01V	10.00V	
	Analog				
P6-21	Corresponding Setting of	0.0%-100.0%	0.1%	100.0%	

	M T C				
	Maximum Input of				
	Analog				
P6-22	Analog Input Filter Time	0.00s-1.00s	0.01s	0.10s	
P6-23	Inverter Function 1	0-65535			
		Bit0:			
		0 Stop directly after releasing			
		brake			
		1 After releasing brake,			
		remove current firstly and			
		then stop			
		Bit1:			
		0 During autotuning,			
		sensorless compensation is			
		disabled			
		1 sensorless compensation	1	48	
		works all the time			
		Bit2:			
		0 When the inverter stops, run			
		the command to prevent			
		shaking			
		1 No shaking prevention			
		Bit4:			
		0 Upper limit of maximum			
		frequency is 90Hz			
		1 Maximum frequency is			
		equal to rated frequency			
		Bit5:			
		0 Analog setting is calculated			
		according to maximum			
		frequency			
		1: Calculate according to rated			
		frequency			
P6-24	Voltage Setting at Motor	0.00V-11.00V	0.01V	0.0V	
	Overheating				
P6-25	Inverter Function 2	0-65535			
		Bit0:			
		0 Detect SPI communication			
		fault			
		1 No detection			
		Bit1:			
		0 Parameters PA-03 and			
		PA-05 can not be changed			
		under the non-operation panel	1	0	
		control mode, and after			
		control mode, and after			

		change, P0-01 can not be			
		changed			
		1 Changeable			
		Bit2:			
		0 Fault Err33, 16 or 17 can			
		not be reset			
		1. Can be reset			
		Bit3:			
		0 During emergency running,			
		sensorless restart function is			
		disabled			
		1 During emergency running,			
		sensorless restart enabled			
		Bit4:			
		0 Under terminal commands			
		of synchronous motor, the			
		inverter is limited to			
		closed-loop vector control			
		1 No restriction			
		Bit5:			
		0 Only when the running			
		frequency is greater than 1/4			
		of the rated frequency, detect			
		if the speed deviation is too			
		big			
		1 Detect if the speed deviation			
		is too big immediately upon			
		start			
P6-27	Zero Speed Signal Output	0ms-9999ms	1	0	
	Delay				
P6-28	Upper Limit of Power	0.00Hz-Maximum frequency	0.01Hz	8.00Hz	®
	Failure Emergency				-
	Running Speed				
		P7 Curve Parameter			
P7-00	Acceleration Time 1	1.0s-100.0s	0.1s	4.0s	
P7-01	Deceleration Time 1	1.0s-100.0s	0.1s	4.0s	
P7-02	S Curve 1 Start Section	10.0%-40.0%	0.1%	40.0%	®
1,02	Proportion	1.0.070 10.070	0.170	10.070	
P7-03	S Curve 1 End Section	10.0%-40.0%	0.1%	40.0%	®
17-05	Proportion	10.0/0-10.0/0	0.170	TU.U/U	
P7-04	Acceleration Time 2	1.0s-100.0s	0.1s	4.0s	
P7-05	Deceleration Time 2	1.0s-100.0s	0.1s	4.0s	
P7-06	S Curve 2 Start Section	10.0%-40.0%	0.1%	40.0%	R
	Proportion		ļ		

P7-07	S Curve 2 End Section	10.0%-40.0%	0.1%	40.0%	®
	Proportion				
P7-08	Acceleration Time 3	1.0s-100.0s	0.1s	4.0s	
P7-09	Deceleration Time 3	1.0s-100.0s	0.1s	20.0s	
P7-10	S Curve 3 Start Section	10.0%-50.0%	0.1%	40.0%	®
	Proportion				
P7-11	S Curve 3 End Section	10.0%-50.0%	0.1%	40.0%	®
	Proportion				
P7-12	Acceleration Time 4	0.5s-100.0s	0.1s	1.0s	
P7-13	Deceleration Time 4	0.5s-100.0s	0.1s	1.0s	
P7-14	S Curve 4 Start Section	10.0%-50.0%	0.1%	40.0%	®
	Proportion				
P7-15	S Curve 4 End Section	10.0%-50.0%	0.1%	40.0%	R
	Proportion				
P7-16	Slipping Test	0.5s-10.0s	0.1s	1.0s	R
	Acceleration Time				
P7-17	Direct Stopping Distance	0.0mm-6553.5mm	0.1mm	0.0mm	®
	Setting				
P7-18	Actual Running Distance	0.0mm-6553.5mm	0.1mm	0.0mm	
	at Direct Stop				•
	1	P8 Keypad and Display Paramete	r	1	
P8-00	Status Indicator of Input	-	-	-	
	and Output Terminals				•
P8-01	LED Running Display	1-32767			
	Parameter	Bit0: Load speed			
		Bit1: Running frequency			
		Bit2: Target frequency			
		Bit3: DC bus voltage			
		Bit4: Output voltage	1		
		Bit5: Output current		32767	
		Bit6: AI1			
		Bit7: AI2			
		Bit8: Car load (%)			
		Bit9: Start compensation			
		current (%)			
		Bit10: Running torque current			
		(%)			
		Bit11: Input status			
			1	1	
		Bit12: Output status			
P8-02	LED Stop Display	Bit12: Output status 1-255	1	255	
P8-02	LED Stop Display Parameter		1	255	
P8-02	1 1 5	1-255	1	255	

	1	1	1		
		Bit3: AI1			
		Bit4: AI2			
		Bit5: Car load (%)			
		Bit6: Input status			
		Bit7: Output status			
P8-03	Elevator Rated Speed	0.001m/s-8.000ms	0.001m/s	1.600m/s	
P8-04	Radiator Temperature	0°C-100°C	1℃	-	•
P8-05	Control Board Software Version No.	0.00-99.99	0.01	-	•
D 9.06					
P8-06	Not Used				
P8-07	Setting Running Time	0h-65500h	1h	0h	
		0: Disabled			
P8-08	Accumulated Working Time	0h-65500h	1h	0h	•
P8-09	Accumulated Seconds	0s-3600s	1s	0s	
	Count				•
P8-10	High Bit of Running	0-9999	1	0	
	Times	Note: 1 refers to actual			•
		running times 10000			
P8-11	Low Bit of Running	0-9999	1	0	
	Times				•
P8-12	Short Circuit Protection	0: Disabled	1	0	
	Detection Between	1: Enabled			
	Circuit and Ground				
P8-13	Not Used				
P8-14	Not Used				
P8-17	Year	2000-2100	1	2014	
P8-18	Month/Day	0101-1231	1	0101	
P8-19	Hour/Minute	00.00-23.59	0.01	00.00	
		P9 Fault and Protection Paramete	r		
P9-09	Automatic Reset Times of	0-3	1	0	
	Fault				
P9-11	Automatic Reset Interval	0.1s-100.0s	0.1s	1.0s	

P9-12	Input Phase Loss	0: Disabled	1	1	
17 12	Protection	1: Enabled	-	-	
P9-13	Output Phase Loss	1-3	1	1	
1 9 15	Protection	Bit0:	1	-	
	Totection	0 Disabled during running			
		1 Enabled during running			
		Bit1:			
		0 Disabled at start			
		1 Enabled at start			
P9-14	First Fault Code	0-60	1	0	•
P9-15	First Fault Subcode	0-999	1	0	•
P9-16	First Fault Month/Day	0-1231	1	0	•
P9-17	First Fault Time	00.00-23.59	0.01	0	
19-17	This rauk Time	00.00-23.39	0.01	0	•
P9-18	Second Fault Code	0-60	1	0	
					•
P9-19	Second Fault Subcode	0-999	1	0	
					•
P9-20	Second Fault Month/Day	0-1231	1	0	•
P9-21	Second Fault Time	00.00-23.59	0.01	0	
					•
P9-22	Third Fault Code	0-60	1	0	
					•
P9-23	Third Fault Subcode	0-999	1	0	
					•
P9-24	Third Fault Month/Day	0-1231	1	0	
					•
P9-25	Third Fault Time	00.00-23.59	0.01	0	
					•
P9-26	Fourth Fault Code	0-60	1	0	
					•
P9-27	Fourth Fault Subcode	0-999	1	0	
					•
P9-28	Fourth Fault Month/Day	0-1231	1	0	
				-	•
P9-29	Fourth Fault Time	00.00-23.59	0.01	0	
					•
P9-30	Fifth Fault Code	0-60	1	0	
1, 50				Ŭ	•

A1200 Series

P9-31	Fifth Fault Subcode	0-999	1	0	•
P9-32	Fifth Fault Month/Day	0-1231	1	0	•
P9-33	Fifth Fault Time	00.00-23.59	0.01	0	•
P9-34	Sixth Fault Code	0-60	1	0	•
P9-35	Sixth Fault Subcode	0-999	1	0	•
P9-36	Sixth Fault Month/Day	0-1231	1	0	•
P9-37	Sixth Fault Time	00.00-23.59	0.01	0	•
P9-38	Seventh Fault Code	0-60	1	0	•
P9-39	Seventh Fault Subcode	0-999	1	0	•
P9-40	Seventh Fault Month/Day	0-1231	1	0	•
P9-41	Seventh Fault Time	00.00-23.59	0.01	0	•
P9-42	Eighth Fault Code	0-60	1	0	•
P9-43	Eighth Fault Subcode	0-999	1	0	•
P9-44	Eighth Fault Month/Day	0-1231	1	0	•
P9-45	Eighth Fault Time	00.00-23.59	0.01	0	•
P9-46	Ninth Fault Code	0-60	1	0	•
P9-47	Ninth Fault Subcode	0-999	1	0	•
P9-48	Ninth Fault Month/Day	0-1231	1	0	•
P9-49	Ninth Fault Time	00.00-23.59	0.01	0	•
P9-50	Tenth Fault Code	0-60	1	0	•
P9-51	Tenth Fault Subcode	0-999	1	0	•
					•

P9-52	Tenth Fault Month/Day	0-1231	1	0	•
P9-53	Tenth Fault Time	00.00-23.59	0.01	0	•
P9-54	Last Fault Code	0-60	1	0	•
P9-55	Last Fault Subcode	0-999	1	0	•
P9-56	Last Fault Month/Day	0-1231	1	0	•
P9-57	Last Fault Time	00.00-23.59	0.01	0	•
P9-58	Last Logic Information	0-65535	1	0	•
P9-59	Last Setting Frequency	0.00Hz-99.00Hz	0.01Hz	0.00Hz	•
P9-60	Last Feedback Frequency	0.00Hz-99.00Hz	0.01Hz	0.00Hz	•
P9-61	Last Bus Voltage	0.0V-6500.0V	0.1V	0.0V	•
P9-62	Last Output Voltage	0V-65000V	1V	0V	•
					-
P9-63	Last Output Current	0.00A-650.00A	0.01A	0.00A	•
P9-64	Last Torque Current	0.00A-650.00A	0.01A	0.00A	•
P9-65	Last Output Power	0.00KW-99.99KW	0.01KW	0.00KW	•
P9-66	Last Input Function Status	0-65535	1	0	•
P9-67	Last Input Function Status 2	0-65535	1	0	•
P9-68	Last Output Function Status 1	0-65535	1	0	•
P9-69	Last Output Function Status 2	0-65535	1	0	•
	1	PA PG Parameter	1	1	
PA-00	PG Pulse Count	100-9999	1	1024	R
PA-01	PG Disconnection Detection Time	0.0s-10.0s (if the time is set as 0, the detection function is disabled)	0.1s	1.0s	R

Comment [12]: 请核对下原文是否有误

PA-03	PG Magnetic Pole Angle	0.0-359.9	0.1	0.0	
					R
PA-04	Present Angle of PG	0.0-359.9	0.1	0.0	
	Magnetic Pole				•
PA-05	Encoder Wiring Mode	0-15	1	0	R
					ĸ
PA-06	PG Frequency Division	1-256	1	1	R
	Factor Ratio				U.
	PB	Communication Parameter (Not	Used)		
	PC S	pecial Enhancement Function Para	ameter		
PC-00	Command Abnormality	0:Slow run	1	1	R
	Action	1: Lock output immediately			U.
PC-01	Abnormality Deceleration	0.1s-300.0s	0.1s	3.0s	R
	Time Option				U.
PC-02	Up Speed Detection Level	0.00-Maximum frequency	0.01Hz	45.00Hz	R
					W
PC-03	Down Speed Detection	0.00-Maximum frequency	0.01Hz	45.00Hz	R
	Level				W
PC-04	Advance Door Opening	0.00-Maximum frequency	0.01Hz	5.00Hz	R
	Judgment				W
PC-05	Frequency Detection	0.00-Maximum frequency	0.01Hz	50.00Hz	
	Level 1				
PC-06	Frequency Detection	0.00-Maximum frequency	0.01Hz	50.00Hz	
	Level 2				
PC-07	Frequency Detection Lag	0.0%-100.0%	0.1%	5.0%	
		(Frequency detection level)			
PC-08	Frequency Reach	0.0%-100.0%(maximum	0.1%	0.0%	
	Detection Width	frequency)			
PC-09	Overspeed Judgment	80%-120%	1%	115%	
	Level				
PC-10	Overspeed Detection	0.0s-5.0s	0.1s	1.0s	
	Delay Time				
PC-11	Overspeed Action	0: Abnormal ramp-to-stop	1	1	
	Options	1: Immediately send an alarm			
		and lock output			
		2: Continue to run			
PC-12	Speed Deviation	0%-50%	1%	30%	
	Judgment Level				
PC-13	Speed Deviation	0.0s-5.0s	0.1s	1.0s	
	Detection Delay Time				_
PC-14	Action at Big Speed	0: Abnormal ramp-to-stop	1	1	
	Deviation	1: Immediately send an alarm			
		and lock output			

		2: Continue to run			
	·	PD Special Function Parameter	•		
PD-00	Torque Boost	0.0: (Auto)	0.1%	1.0%	
		0.1%-30.00%			R
PD-01	Torque Boost Frequency	0.00-Maximum frequency	0.01Hz	50.00Hz	®
PD-02	Slip Compensation	0.0%-200.0%	0.1%	100.0%	®
PD-03	Vibration Suppression Gain	0-100	1	20	®
PD-04	Inverter Function 3	0-65535 Bit0: 0 Fixed current loop parameter of induction motor 1 Current loop parameter of induction motor is set by function codes	1	0	R
PD-05	Zero Servo Current Factor	1.0%-50.0%	0.1%	15.0%	®
PD-06	Zero Servo Speed Loop KP	0.05-1.00	0.01	0.50	®
PD-07	Zero Servo Speed Loop T1	0.05-2.00	0.01	0.60	R
		PU Monitoring Parameter			
PU-00	Pre-torque Current	-200.0%-200.0%	0.1%	0	•
PU-01	Logic Information	0-65535	1	0	•
PU-02	Setting Frequency	0.00Hz-99.00Hz	0.01Hz	0.00Hz	•
PU-03	Feedback Frequency	0.00Hz-99.00Hz	0.01Hz	0.00Hz	•
PU-04	Bus Voltage	0.0V-6500.0V	0.1V	0.0V	•
PU-05	Output Voltage	0V-65000V	1V	0V	•
PU-06	Output Current	0.00A-650.00A	0.01A	0.00A	•
PU-07	Output Torque	0.0%-200.0%	0.1%	0.0%	•
PU-08	Torque Current	0.00A-650.00A	0.01A	0.00A	•

PU-09	Outrust Damas	00 001-W 00 001-W	0.011-31/	0.001-334	
PU-09	Output Power	-99.99kW-99.99kW	0.01kW	0.00kW	•
PU-10	Car Load	0.0%-100.0%	0.1%	0.0%	•
PU-11	Car Speed	0.000m/s-65.000m/s	0.001m/s	0.000m/s	•
PU-12	Communication Interference	0-65535	1	0	•
PU-13	Input Function Status 1	0-65535	1	0	•
PU-14	Input Function Status 2	0-65535	1	0	•
PU-15	Output Function Status 1	0-65535	1	0	•
PU-16	Output Function Status 2	0-65535	1	0	•
PU-17	AII Voltage	0.00V-20.00V	0.01V	0.00V	•
PU-18	AI2 Voltage	0.00V-20.00V	0.01V	0.00V	•
PU-19	AO1 Voltage	0.00V-20.00V	0.01V	0.00V	•
PU-20	Start Slip Pulse Count	0-65535	1	0	•
PU-21	Pulse Count Per Second Output By PG Card	0-65535	1	0	•
		PP User Parameter			
PP-00	User Password	0-65535 0: No password	1	0	
PP-01	Parameter Update	0: None 1: Reset 2: Clear memory information	1	0	R
PP-02	User Setting Check	0: Disabled 1: Enabled	1	0	®

Chapter 6 Parameter Description

P0 Group: Basic Parameter

Function Code	Name	Default	Minimum Unit	Setting Range
P0-00	Control Mode	1	1	0, 1, 2

0: Sensorless Vector Control--Open Loop Vector (SVC)

This control mode is used for fault judgment during running or inspection of autotuning stage. Pay

attention to that this mode is only applied to control of induction motor. Synchronous motors can only adopt closed loop control mode.

1: Feedback Vector Control---Closed Loop Vector (VC)

This control mode is applied to high accuracy speed control of the elevator. During normal operation, A1200 shall run under this control mode.

2: V/F control

This control mode is applied to special elevator application conditions. Under this mode, rotary encoder is not required but the control effect of this mode is poor compared with vector control mode.

Note: When the vector control mode is selected, it is required to conduct motor parameter autotuning. Only with correct motor parameters, advantages of vector control mode can be given into full play. Moreover, user can adjust the speed regulation parameter (P2 group) to get better performance.

Function Code	Name	Default	Minimum Unit	Setting Range
P0-01	Command Option	1	1	0, 1

Select channel of control commands of the inverter.

Control commands of the inverter include: Start and stop.

0: Keypad control ("UNIT/D.L.C" indicator on);

The start and stop of the inverter will be controlled with RUN and STOP/RES of the keypad. Moreover, the running direction can be changed by setting of P0-04.

1: Terminal control ("UNIT/D.L.C" indicator off);

Forward command (FWD) and reverse command (REV) set through multiple-function input terminals control the operation of the inverter.

♦ Note: Under terminal control mode (P0-01=1), the default of control mode (P0-00) is limited as 1 and can not be changed.

Function Code	Name	Default	Minimum Unit	Setting Range
P0-02	Speed	1	1	1-5

Select the speed input channel of the inverter. There are four types of channels:

0: Digital setting

A1200 elevator inverter adopts the digital setting value inside it as the speed. The initial value is P0-03 "digital setting frequency".

1. Preset speed

Select the preset speed running mode as the inverter running mode. P4 group "Input Function Parameter" and P6 group "Speed Parameter" are required for confirming the correspondence of setting signals and setting frequency.

2: AI1 3: AI2

Frequency is confirmed by analog input terminals. Standard A1200 elevator inverter includes two analog input terminals, of which AI1 is used as 0V-10V voltage input terminal while AI2 is used as 0V-10V voltage input and 4mA-10mA current input. Specific purpose shall be selected by jumper wire on control board.

4: Not used

5: Special preset speed

On general conditions, preset speed setting mode under special application conditions is not used.					
Function Code	Name		Default	Minimum Unit	Setting Range
P0-03	Digital	Setting	0.00Hz	0.01Hz	0.00HzMaximum
	Frequency				frequency

A1200 speed setting mode: Adopt the target running frequency after digital setting.

Function Code	Name	Default	Minimum Unit	Setting Range
P0-04	Running Direction	0	1	0, 1

By changing this function code, the rotary direction can be changed without changing the tractor wiring.

Note: After parameters are initialized, the motor resets to its original running direction. So please use this function code with great caution.

Function Code	Name	Default	Minimum Unit	Setting Range
P0-05	Maximum	50.00Hz	0.01Hz	0.00-90.00Hz
	Frequency			

This function code is used to set the maximum output frequency of the inverter. Under special circumstances, when using frequency higher than power frequency, please consider the mechanical load of motors carefully.

Function Code	Name	Default	Minimum Unit	Setting Range
P0-06	Carrier Frequency	Up to specific	0.1kHz	0.5-16.0Hz
		model		

Carrier frequency is closely related to running noises of motor. Generally, motor can run without noise when carrier frequency is set above 10kHz. You are recommended to control the inverter to run at a lower carrier frequency within the allowable noise range.

When carrier frequency is low, higher-order harmonics of output current increases, motor loss goes up and the temperature rise of motor increases.

If carrier frequency is high, the motor loss drops, motor temperature rise decreases but system loss increases, system temperature rise increases and the interference increases.

Influence of adjustment of carrier frequency on the following performance:

Carrier frequency	Lowhigh	
Motor noise	Bigsmall	
Output current waveform	Poorgood	
Motor temperature rise	Highlow	
Inverter temperature rise	Lowhigh	
Leakage current	Smallbig	
External radiation interference	Smallbig	

Function Code	Name	Default	Minimum Unit	Setting Range
P0-07	Carrier Frequency Adjustment	0	1	0, 1

0: Fixed PWM carrier frequency adjustment mode

1: Random PWM carrier frequency adjustment mode

Motor with random PWM carrier frequency adjustment mode has wide audio frequency range

while the motor with fixed PWM carrier frequency adjustment mode has fixed noise frequency. P1 Group: Motor Parameter

Function Code	Name	Default	Minimum Unit	Setting Range
P1-00	Encoder Type	0	1	0, 1, 2

0: SIN/COS, absolute encoder

1: UVW encoder

2: ABZ incremental encoder

Please select appropriate parameters according to master model and set PA group PG parameter correctly.

Function Code	Name	Default	Minimum Unit	Setting Range
P1-01	Rated Power	Up to specific	0.1kW	0.4-110.0kW
		model		
P1-02	Rated Voltage	Up to specific	1V	100-500V
		model		
P1-03	Rated Current	Up to specific	0.01A	0.00-655.00A
		model		
P1-04	Rated Frequency	50.00Hz	0.01Hz	0.00-90.00Hz
P1-05	Rated Rotation	1460rpm	1rpm	0-3000rpm
	Speed			

Please set these function codes according to motor nameplate.

In order to achieve better control performance of A1200 elevator inverter, it is required to input correct motor parameters. The system has the function of parameter autotuning. For accurate parameter autotuning, it is required to set rated parameters of motor properly.

For ensuring higher control performance, please configure standard motor of the inverter. If there exists large difference between the motor power and the standard applicable motor, the control performance of the inverter will decrease significantly.

Function Code	Name	Default	Minimum Unit	Setting Range
P1-07	Power Failure	0.0	1	0.0-359.9
	Angle of			
	Synchronous Motor			

This function code refers to the angle of the magnetic pole of the motor upon power failure, which will be recorded at power cut and used for comparison and judgment when it is powered on again.

Function Code	Name		Default	Minimum Unit	Setting Range
P1-09	Current F	ilter	0.0	0.1	0.0-3.0
	Factor	of			
	Synchronous Mc	otor			

Setting current filter time has certain inhibition effect on periodic vertical shaking. When adjusting the filter time, increase it by 0.5 every time gradually and select the value with best effect.

Function Code	Name		Default		Minimum Ur	nit	Setting Range
P1-10	Encoder Parity		0 1		1		0-65535
This function code is set by the manufacturer and please do not change it without authorization.							
Function Code	Name	Default		M	inimum Unit	Set	ting Range
P1-11	Motor autotuning	0		1		0-4	

1) Select autotuning mode and optional values include:

0: No operation;

1: Autotuning for a motor with load: Induction motor adopts stationary autotuning, while synchronous motor adopts rotary autotuning mode;

2: Autotuning for a motor with no load;

2) Attentions for autotuning:

• Please make sure all installation and wiring meet safety technical specifications.

• When adopting autotuning for a motor with load, ensure the motor is properly wired (motor UVW corresponds to controller UVW one by one). If the motor is wired improperly, the motor may shake back and forth or doesn't work after the brake is turned on. At this time, it is required to exchange any two phases of UVW motor cables.

• Under the fault alarm status, the system can not be autotuned (TUNE is not displayed). Please reset current fault and start autotuning.

• For synchronous master, please tune the motor again when motor wiring sequence is changed or encoder is replaced.

• For synchronous master, please autotune the motor for multiple times (more than three times) and compare the PG initial angle (PA-03). If the error is within 5° , autotuning is completed successfully.

• After autotuning is completed, conduct commissioning at low speed to observe if current is normal; if the actual running direction is consistent with the setting direction. In case of inconsistency, please change it through P0-04.

• The autotuning process for a motor with load can be dangerous (slow run set in many control cabinets can be motor-operated emergency running. Safety circuit of hoistway is short-circuited. Attentions must be paid to this), so please ensure that there is no person in hoistway during autotuning.

Motor parameter autotuning process is as follows:

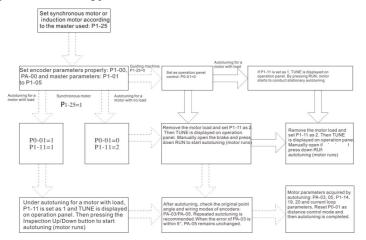


Figure 6-1 Motor Autotuning Procedure

Description of autotuning of synchronous motor:

• As A1200 synchronous motor system requires feedback signal of encoder, it is required to set encoder parameters properly before autotuning;

• The motor must rotate during the autotuning of synchronous motor system. The best autotuning mode is idling dynamic autotuning. If conditions do not permit, on-load dynamic autotuning mode can be adopted;

• On-load autotuning of synchronous motor includes autotuning of stator resistor, D and Q shaft inductance, current loop(zero servo inclusive) PI parameter, zero position angle of encoder; during idling autotuning, the system will autotune the encoder wiring modes;

• Stator resistor, rotor resistor, leakage inductance, mutual inductance and idling current will be autotuned during the stationary autotuning process of induction motor; complete autotuning includes autotuning of mutual inductance, idling current and current loop parameters. 3) List of running brake output control

As the safety of control system is different under different statuses, the system adopts different modes to process running and brake contactor output under different statuses. In some cases, it is required to turn on the running or brake contactor manually. Relevant statuses are listed as follows:

Output status	Idling	On-load autot	uning	Panel	Terminal control	
Control mode	autotuning		e		P0-01=1	
		Synchronous Induction		P0-01=0		
		motor	motor			
Running	Output	Output	Output	No output	Output	
contactor						
Brake contactor	No output	Output	No output	No output	Output	

Table 6-1 List of Output Status

Function Code	Name	Default	Minimum Unit	Setting Range
P1-14	Stator Resistor	Up to specific	0.001 Ω	0.001-65.000 Ω
		model		
P1-15	Rotor Resistor of	Up to specific	0.001 Ω	0.001-65.000 Ω
	Induction Motor	model		
P1-16	Leakage	Up to specific	0.01mH	0.01-650.00mH
	Inductance of	model		
	Induction Motor			
P1-17	Mutual	Up to specific	0.1mH	0.1-6500.0mH
	Inductance of	model		
	Induction Motor			
P1-18	Idling Current of	Up to specific	0.01A	0.01-650.00A
	Induction Motor	model		
P1-19	D-shaft	0.01mH	0.01mH	0.01-650.00mH
	Inductance of			
	Synchronous			
	Motor			
P1-20	Q-shaft	0.01mH	0.01mH	0.01-650.00mH
	Inductance of			
	Synchronous			

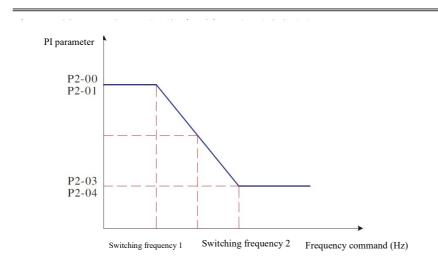
	Motor			
P1-21	Back	0V	1V	0-65535V
	Electromotive			
	Force of			
	Synchronous			
	Motor			
P1-25	Motor Type	1	1	0: Induction motor
				1: Synchronous
				motor

For ensuring control performance, please configure standard motor for the inverter. If there exists large difference between the motor power and standard applicable motor, the control performance of the inverter will be significantly decreased.

After motor autotuning is completed normally, P1-14 - P1-21 will be updated automatically.

In terms of induction motor, if it is impossible to autotune the motor due to field conditions, user can manually input parameters by reference to parameters of motors with same nameplate parameters.

• Remarks: Every time after the motor rated power P1-01 of induction motor is changed, the system will restore P1-14-P1-18 to the default standard motor parameter automatically.


Function Code	Name	Default	Minimum Unit	Setting Range
P2-00	Speed Lo	op 35	1	0-100
	Proportional			
	Gain 1			
P2-01	Speed Lo	op 0.60s	0.01s	0.01-10.00s
	Integral Time 1			
P2-02	Switching	2.00Hz	0.01Hz	0.00-P2-05
	Frequency 1			
P2-03	Speed Lo	op 30	1	0-100
	Proportional			
	Gain 2			
P2-04	Speed Lo	op 0.80s	0.01s	0.01-10.00s
	Integral Time 2			
P2-05	Switching	5.00Hz	0.01Hz	P2-02- Maximum
	Frequency 2			frequency

P2 Group: Vector Control Parameter

P2-00 --P2-05 are used for autotuning speed loop performance during open and closed-loop vector control.

P2-00 and P2-01 are PI regulation parameters when the running frequency is less than the switching frequency 1(P2-02); P2-03 and P2-04 refer to PI regulation parameter when the running frequency is greater than the switching frequency 2 (P2-05). PI regulation parameter between the switching frequency 1 and the switching frequency 2 is the weighted average value of P2-00, P2-01 and P2-03 as well as P2-04, as shown in the figure below:

A1200 Series

Figure 6-2 Parameters Schematic Diagram

The inverter adjusts the dynamic speed response under vector control mode by adjusting the speed proportional gain and speed integral time of regulator. Either increasing the speed proportional gain or reducing speed integral time would quicken the dynamic response of the speed loop. However, if the speed proportional gain is excessive or the speed integral time is insufficient, this will result in oscillation.

Proposed regulation method:

The default can be applied to almost all situations. If the default can not meet requirements (especially when the inverter runs by motor with small power), the speed loop default proportional gain may be slightly larger and there exists oscillation of motor upon start. At this time, user shall reduce the speed loop proportional gain to ensure no system oscillation. Then user shall increase the proportional gain as possible and regulate the integral time so as to enable the system to response quickly without over control.

If the switching frequency 1 and switching frequency 2 are 0 at the same time, only P2-03 and P2-04 are valid.

• Note: If PI is set improperly, it may result in speed over regulation and even result in overvoltage when over-control backs to original status.

Function Code	Name		Default	Minimum Unit	Setting Range
P2-06	Current	Loop	60	1	10-500
	Proportion	al Gain			
P2-07	Current	Loop Integral	30	1	10-500
	Gain				

Under the vector control mode, P2-06 and P2-07 are current loop regulation parameters. Generally, users do not need to adjust this parameter and the default parameter can achieve the control performance of vector control mode. If regulation is required, please refer to the regulation method of speed loop PI.

Function Code	Name	Default	Minimum Unit	Setting Range
P2-08	Upper Limit of Torque	150.0%	0.1%	0.0-200.0%

This function code refers to the limit of A1200 output torque current. During start of the elevator,

the upper limit of pre-torque compensation used also adopts function parameter. When this function parameter is set as 100%, it corresponds to the rated output torque of system applicable motor.

Function Code	Name	Default	Minimum Unit	Setting Range
P2-09	Torque Acceleration Time	1ms	1ms	1-500ms
P2-10	Torque Deceleration Time	350ms	1ms	1-500ms

These two function codes are used to set the acceleration and deceleration time of the torque.

During stop process, as the characteristics of the master are different, the master may send a "chocking sound" when current is removed. At this time, user can increase the torque deceleration time properly to eliminate the abnormal sound.

Function Code	Name	Default	Minimum Unit	Setting Range
P2-11	Speed Filter Factor	10	1	1-20
This function code is used to eliminate speed feedback fluctuation and requires no need generally.				

Function Code	Name	Default	Minimum Unit	Setting Range
P2-12	Autotuning Function	0	1	0-65535

It is used for setting relevant options of autotuning function.

P2-12 Autotuning Function					
Bit Function Definition Definition Definition					
Bit1	Autotuning Enable	0: Disabled	0		
		1: Enabled			
Bit2	Notes 1of Autotuning	0: Semi-automatic	0		
	Mode	1: Full-automatic			

• Note: Semi-automatic mode refers to that the autotuning function enabled only when inspection signal is enabled. Full-automatic mode refers to that the autotuning function will be enabled whether the inspection signal is enabled or disabled.

P3 Group: VF Function Parameter

Function Code	Name	Default	Minimum Unit	Setting Range
P3-00	Start Frequency	0.00Hz	0.01Hz	0.00-10.00Hz

In order to improve the start torque of the elevator, set an appropriate start frequency. Moreover, In order to enable the motor to make magnetic flux fully, it's required to maintain the motor's start frequency for certain time. When A1200 elevator inverter is in the preset speed control mode, this function works; under the digital setting, analog setting and other modes, setting of this start frequency is disabled.

Function Code	Name	Default	Minimum Unit	Setting Range
P3-01	Torque Output Delay	0.20s	0.01s	0.00-10.00s
P3-02	Brake Open Delay	0.20s	0.01s	0.20-10.00s
P3-03	Zero Speed Delay	0.30s	0.01s	0.00-10.00s
P3-04	Start Time	0.00s	0.01s	0.00-10.00s
P3-05	Start Frequency Holding	0.00s	0.01s	0.00-10.00s
	Time			
P3-06	Brake Release Delay	0.20s	0.01s	0.00-10.00s
P3-07	Stop Release Delay	0.30s	0.01s	0.00-10.00s

P3-08	Running	Contactor	0.00s	0.01s	0.00-10.00s
	Release Delay				

By setting function code P3-01 --P3-08, the easiness of elevator during start and stop can be adjusted properly. Please see figure below for specific definition of all function codes (Example: running at preset speed):

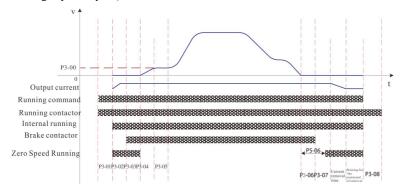


Figure 6-3 Running Sequence

The time of current removal depends on actual current and torque deceleration time (P2-10). The waiting time for commands of removal can be set as waiting all the time or waiting for 5s at

most. See the description of P6-23 for detail.

When the running contactor output control function of A1200 is disabled, directly skip the time period of P3-01 and P3-08.

When the brake output control and running output function of A1200 are disabled, directly skip the time period of P3-02 and P3-07.

Function Code	Name	Default	Minimum Unit	Setting Range
P3-09	Start Pre-torque Setting	0	1	0-5

Setting Value	Description
0	No pre-torque
1	DI setting
2	AI1 setting
3	AI2 setting
4	Fixed pre-torque
5	sensorlesscompensation

A1200 inveter has five pre-torque setting options of which DI setting, A11 setting and A12 setting can only be enabled with weighing sensor. When the pre-torque compensation function enabled, the system can output the torque applicable to elevator load in advance to ensure the instant comfort of elevator when the brake is opened. The output pre-torque is subject to the upper limit of torque (P2-08). When the pre-torque calculated is greater than P2-08, the system output torque is the upper limit of torque P2-08.

During application, if the elevator has no sensor, operators can set P3-09 as 4 and then regulate the pre-torque offset of P3-12 so as to enable A1200 can conduct pre-excitation fully before the brake is turned on, which will improve the comfort at start. However, this parameter can not be set

0.00-1.50

excessive and shall be set between -15%15%.					
If sensorless compensation function is enabled and P3-09=5, debug PD-05 PD-07 according to					
field conditions and adjust them gradually based on PD-05=15.0%, PD-07=0.50 and PD-08=0.60.					
Function Code Name Default Minimum Unit Setting Range					
P3-10	Pre-torque Shift	48.0%	0.1%	0.0-100.0%	

0.60

0.01

P3-11

Pre-torque Gain

$\begin{array}{c} \hline \\ \hline $	Pre-torque shift, i.e., the balance coefficient of the elevator, refers to the percentage of the counterweight relative to the rated load of the elevator. If the elevator's load is G1, the weight of counterweight is G2 and the rated load of elevator is G3 during idling, the pre-torque shift (P3-10)=(G2-G1)/G3. If the material weight in the car is G4, the pre-torque output of motor is: Pre-torque output of motor=pre-torque gain $*/G4-(G3*(P3-10))/$
Figure 6-4 Car Counterweight	The output pre-torque direction has nothing to do with the running direction, and is only relative to the car load;
Relationship	If the car load is greater than (G3*(P3-10)), the output pre-torque goes upward, otherwise, it goes downward.

Function Code	Name			Default	Minimum Unit	Setting Range
P3-12	Initial	Offset	of	10.0%	0.1%	-100.0-100.0%
	Pre-torque	e				

When P3-09 is set as 4 (fixed pre-torque), before opening the brake, A1200 will output corresponding pre-torque current based on P3-12 to conduct pre-exaction so as to improve the start comfort. But this parameter shall not be set as too large, and shall be set between -15%-15%.

Function Code	Name	Default	Minimum Unit	Setting Range
P3-13	DI Weighing Signal 1	10.0%	0.1%	0.0-100.0%
P3-14	DI Weighing Signal 2	30.0%	0.1%	0.0-100.0%
P3-15	DI Weighing Signal 3	70.0%	0.1%	0.0-100.0%
P3-16	DI Weighing Signal 4	90.0%	0.1%	0.01-00.0%

When P3-09 is set as 1, A1200 will detect the car load according to the four DI weighing signals and then control the pre-torque current output.

Four setting values of P3-13--P3-16 shall correspond to the weighing terminal 1 to 4 one by one and shall be used cooperatively. The setting value of each function code refers to the percentage of corresponding car load when this signal is enabled.

For example, when the car load reaches to 10%, the weighing terminal 1 signal is enabled and then P3-13 is set as 10%; when the car load reaches to 30%, the signal of weighing terminal 2 is enabled and then P3-14 is set as 30%.

Function Code	Name	Default	Minimum Unit	Setting Range
P3-17	Weighing Analog Input	0.10s	0.01s	0.00-1.00s
	Filter Time			

P3-18	Corresponding Input of	0.00V	0.01V	0.00-10.00V
	Weighing Analog Idling			
P3-19	Corresponding Input of	10.00V	0.01V	0.00-10.00V
	Weighing Analog			
	Full-load			

When P3-09 is set as 2 or 3, A1200 will detect the car load according to AI1 or AI2 analog signal and then control the pre-torque current.

P3-19 refers to the filter time of analog signal. Generally, increasing this parameter properly can effectively improve the anti-interference performance of weighing signals.

When analog weighing signal input mode is adopted, the analog input voltage when the car is idling and full must be set properly so as to ensure correct pre-torque compensation.

The functional block diagram of pre-torque as follows:

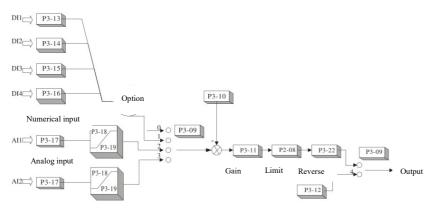


Figure 6-5 Principal Block Diagram of Pre-torque

Function Code	Name		Default	Minimum Unit	Setting Range
P3-20	Analog	Weighing	0	1	0-100
	Autotuning				
P3-21	Analog	Weighing	0	1	0, 1
	Asutotuning Options				

When analog weighing autotuning mode is selected, the inverter can autotune the weighing, and that is to record idling and full-load data into P3-18 and P3-19 through variation of car load. Specific operation is as follows:

1) Make sure to set P3-2 1 as 1 and P3-09 as 2 or 3 so as to enable autotuning of the system.

2) Make the elevator stay at any floor and the car in idling status, then input the setting value of P3-20 as 0 and press ENTER to input the value.

3) Place N% loads in the car, set P3-20=N and press ENTER to enter the parameter. For example: When placing 100kg material in the elevator with rated capacity of 1000kg, input P3-20=10. The autotuning of weighing is completed.

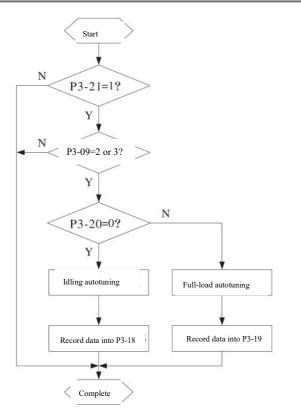


Figure 6-6 Autotuning Procedure of Analog Weighing

Note:

♦ During autotuning , P3-21 is set as 1. After autotuning is completed, please reset P3-21 as 0.

• Be sure to conduct idling autotuning firstly before conducting full-load autotuning , otherwise the data acquired may be incorrect.

Function Code	Name		Default	Minimum Unit	Setting Range
P3-22	Pre-torque	Direction	0	1	0, 1
	Reverse				

Through this function code, operators can reverse the direction without changing the pre-torque value.

Function Code	Name	default	Minimum Unit	Setting Range
P3-24	Slip Test Function	0	1	0-65535

In order to conduct slipping test, a inspection signal input point must be set and the inspection signal enabled.

Specific operating procedures:

1) Set P3-24=1 at stop status;

2) Enable the inspection input signal of A1200 elevator inverter;

3) Press down the inspection running button to conduct an overhaul.

Under the slipping test mode, the inverter will accelerate according to the acceleration time set by P7-16. If the slipping effect is not obvious, P7-16 can be decreased appropriately.

After slipping test is completed, change P3-24 as 0 to make the inverter exit the slipping test mode.

P4 Group: Input Function Parameter

Function Code	Name	Default	Minimum Unit	Setting Range
P4-00	Input Filter Time	0.020s	0.001s	0.001-0.200s

This function code is used to set the sensitivity of terminals. If digital terminals are susceptible to interference, which may result in incorrect actions, increase this parameter and then the anti-interference performance will be improved but the sensitivity of input terminals is reduced.

Function Code	Name	Default	Minimum Unit	Setting Range
P4-01	DI1 Terminal Function	1	1	0-122
P4-02	DI2 Terminal Function	2	1	0-122
P4-03	DI3 Terminal Function	3	1	0-122
P4-04	DI4 Terminal Function	4	1	0-122
P4-05	DI5 Terminal Function	5	1	0-122
P4-06	DI6 Terminal Function	6	1	0-122
P4-07	DI7 Terminal Function	7	1	0-122
P4-08	DI8 Terminal Function	0	1	0-122
P4-09	DI9 Terminal Function	0	1	0-122
P4-10	DI10 Terminal Function	0	1	0-122

These parameters are used for setting functions of digital multi-function terminals and specific functions are described below:

Setting value	Function	Description						
0	No function	The inve	The inverter has no action even there exists signal input.					
		Disable functions of terminals not used to avoid incorrect						
		actions.						
1	Forward command	Control	the for	ward and	reverse	of th	e inverte	er through
	(FWD)	external	termina	als, which	in turn	enable	e the elev	ator to go
		up and de	own.					
		Attentior	ns: Eve	ery time	after	conclu	usion of	running,
		command	d termi	nal will b	be discor	nnecte	d once. (Otherwise,
		the eleva	tor can	not start	running a	again.		
				FWD	REV	Defi	nition	
				OFF	OFF	Disa	ıbled	
				ON	OFF	Forv	vard	
				OFF	ON	Rev	erse	
				ON	ON	Disa	ibled	
3	Preset speed	Through	combir	nation of	digital st	atuses	of three	terminals,
	terminal 1 (K1)	the syste	em can	set the s	speed of	eight	sections	. Detailed
4	Preset speed	combinat	tion is s	shown bel	ow:			
	terminal 2(K2)	K3	K2	K1	Freque	ncy	Corresp	onding
5	Preset speed				Setting		Parame	ter

A1200 Series

	terminal 3(K3)	OFF	OFF	OFF	Preset	P6-00
					speed 0	
		OFF	OFF	ON	Preset	P6-01
					speed 1	
		OFF	ON	OFF	Preset	P6-02
					speed 2	
		OFF	ON	ON	Preset	P6-03
					speed 3	
		ON	OFF	OFF	Preset	P6-04
					speed 4	
		ON	OFF	ON	Preset	P6-05
					speed 5	
		ON	ON	OFF	Preset	P6-06
					speed 6	
		ON	ON	ON	Preset	P6-07
					speed 7	
6	Fault Reset input					e button RESET in
		function.	. With	this fu	nction, eleva	tor fault can be
		automati	cally res	et.		
7	Enable control	The invo	erter is	set with	running enab	ole terminal. If the
	input	enable s	ignal dis	sappears	during the ru	nning, the inverter
		-				nand immediately.
8	Inspection input		-	-		200 will select the
						During stop, if the
		-	-	-		firstly, A1200 will
				-	-	speed deceleration
						reverse commands
						rse commands are
						running process,
		A1200 w	-		•	
9	Emergency input				-	ator will enter the
						48V battery supply
10	D	or 220V			-	
10	Running contactor				-	erminals or brake
11	feedback input		•			nverter will start to
11	Brake feedback				-	and brake feedback
	input					ection signal of the
						k signals still exist,
						the message that
		"adhesio	•			1
				-		l, detect this signal
					vator inverter.	dataat this sime-1
		11 brake	reedbac	ж signa	i is selected,	detect this signal

		during running of A1200 elevator inverter.
12	Weighing terminal	Weighing signals of corresponding digital values. Relevant
	1 input	setting parameters are included between P3-13P3-16.
13	Weighing terminal	
	2 input	
14	Weighing terminal	
	3 input	
15	Weighing terminal	
	4 input	
16	External fault	External fault input point. When this signal is enabled, the
	input	system will send an alarm and stop running.
17	Motor overheating	After DI terminal is set as 17 or 117 (NO/NC input of
	input	motor overheating) and when corresponding digital
		terminal signals are enabled, it is judged as motor
		overheating protection. When the digital signal is disabled,
		motor overheating fault will be reset automatically.
18	Up speed judgment	Through these two signal functions and PC-02 and PC-03,
	input	forced deceleration function can be realized. When the
19	Down speed	elevator goes up, if the up speed judgment switch(forced
	judgment input	deceleration switch) has action, A1200 will compare
		current running frequency with PC-02. If it is greater than
		PC-02, A1200 will slow down and stop immediately
		(according to time setting of PC-01) to ensure elevator
		safety. This is also same when the elevator goes down. See
		description of PC Group for detail.
20	Preset speed logic 1	Preset speed setting mode(P0-02=5) for special
21	Preset speed logic 2	application. Never use this option during common
		application situation.
22	Direct stop	This signal directly enable the direct stop function. During
	command	the ramp-to-stop status, A1200 will directly stop when this
		signal is enabled. Please see Section 7.7 for detail.

♦Note: Terminal input range: 0-122; if the hundreds place is 1, it refers to this signal is normally closed and effective. If the hundreds place is 0, this signal is normally open and effective; the low two bits refer to terminal input functions. When the value is greater than 22, this function is disabled; for example: 106 refers to the terminal is used for fault reset and the signal is normally closed.

Function Code	Name	Default	Minimum Unit	Setting Range
P4-13	Preset Speed Filter Time	0.020s	0.001s	0.000-0.200s

During use of the elevator, this command is set by external controller. Incorrect setting of preset speed command caused by relay delay or dispersion of controller terminals may result in abnormality of running curve of the elevator.

Filter preset speed terminals through P4-13 to remove wrong commands in the switching process

of preset speed. As shown below: Preset speed 1 Preset speed 6 ←P4-13 → Preset speed OFF terminal 1 Preset speed OFF ON terminal 2 Preset speed OFF ØŊ terminal 3

Figure 6-7 Preset Speed Signal Switching Procedure

P5 Group: Output Function Parameter					
Function Code	Name	Default	Minimum Unit	Setting Range	
P5-00	Not Used	15	1	0-18	
P5-01	TA4-TC4 Output	6	1	0-18	
P5-02	TA3-TC3 Output	5	1	0-18	
P5-03	TA1-TB1-TC1 Output	4	1	1-18	
P5-04	TA2-TB2-TC2 Output	1	1	0-18	

All functions are described as follows:

Setting value	Function	Description	
0	No output	Output terminals have no function	
1	Running	The inverter is running and ON signal is output at this	
		time	
2	Zero speed running	This signal enabled when the inverter runs at zero speed.	
3	Zero speed signal	This signal enabled when the output frequency of the	
		inverter is 0 or during stop,	
4	Fault signal	The fault signal enabled in case of inverter fault.	
5	Running contactor	Action of running contactor under output control.	
	output function		
6	Brake output control	Action of brake contactor under output control.	
7	Advance	Under the ramp-to stop mode, if the output frequency is	
	door-opening signal	lower than PC-04 setting, this signal enabled.	
8	Bus undervoltage	When the bus voltage is less than 280V, the inverter will	
		output the bus undervoltage signal for realizing elevator	
		running by battery supply.	
9	FDT 1 output	Please refer to description of PC parameter group.	
10	FDT 2 output		
11	Frequency reach		
12	Overspeed output	When the running frequency of the inverter exceeds the	
		setting value (PC-09) and the overspeed time exceeds	
		PC-10, the inverter will output overspeed signal.	

14	Running time reach	The accumulated running time of the inverter exceeds		
		the time set by P8-07, the inverter will output ON signal.		
15	Running ready	The inverter is ready for running and it outputs ON		
		signal.		
16	Contact adhesion	When contactor adhesion status is detected, the inverter		
	output control	will output ON signal		
17	Releveling output	The inverter is ready for running and the running		
		frequency is less than PC-05 setting, then the inverter		
		outputs ON signal.		
18	Light-load running	During light-load running, the inverter outputs ON		
	output	signal		

Function (Code Nan	ne	Default	Minimum Unit	Setting Range
P5-06	Zero	o Speed Output Lag	0.000s	0.001s	0.000-2.000s
	Tim	e			

When output function 2(Zero Speed Running) is selected, the lag time of this output signal is determined by P5-06. See figure 6-3 for corresponding relation.

Function Code	Name	Default	Minimum Unit	Setting Range
P5-07	AO Output	0	1	0-6

The master control panel of A1200 elevator inverter has an analog output terminal and P5-07 describes function of this analog output terminal.

Standard analog output (zero offset: 0, gain: 1): 0mA-20mA(or 0V-10V). The range of relative value is described in the table below:

Setting value	Function	Description
0	Running frequency	0-Maximum output frequency
1	Setting frequency	0-Maximum output frequency
2	Output current	0-2 times of the rated current of the inverter
3	Output torque	0-2 times of the rated current of the motor
4	Output voltage	0-1.2 times of the rated voltage of the inverter
5	AI1	0V-10V
6	AI2	0V-10V/0mA-20mA

Function Code	Name	Default	Minimum Unit	Setting Range
P5-08	AO Zero Offset Factor	0.0%	0.1%	-100.0-100.0%
P5-09	AO Gain	1.00	0.01	-10.00-10.00

If use "b" for offset, "k" for gain, "Y" for actual output, and "X" for standard output, then the actual output is: Y=kX + b.

Y=kx+b;

AO offset factor 100% corresponds to 10V(20mA).

Standard output refers to 0V-10V output (20mA). Corresponding analog output: 0- Maximum frequency.

These function codes are generally used to correct the zero shift and output amplitude deviation of

the analog output, and they can be also used to define the desired output curves.

For example: if the analog output is running frequency, and 8V(16mA) is required to be output when the frequency is 0 and 3V(6mA) is output under the maximum frequency, then the gain shall be set as "-0.50" and the zero offset shall be set as "80%".

• Note: When the Direct Stop Function is enabled, AO output function will be disabled automatically.

P6 Group: Speed Parameter

When A1200 selects preset speed running mode, it is required to set parameters P6-00 --P6-15 to determine the running characteristics of its curves.

Function Code	Name	Default	Minimum Unit	Setting Range
P6-00	Preset Speed 0	0.00Hz	0.01Hz	0.00-Maximum
				frequency
P6-01	Preset Speed 1	0.00Hz	0.01Hz	0.00-Maximum
				frequency
P6-02	Preset Speed 2	0.00Hz	0.01Hz	0.00-Maximum
				frequency
P6-03	Preset Speed 3	0.00Hz	0.01Hz	0.00-Maximum
				frequency
P6-04	Preset Speed 4	0.00Hz	0.01Hz	0.00-Maximum
				frequency
P6-05	Preset Speed 5	0.00Hz	0.01Hz	0.00-Maximum
				frequency
P6-06	Preset Speed 6	0.00Hz	0.01Hz	0.00-Maximum
				frequency
P6-07	Preset Speed 7	0.00Hz	0.01Hz	0.00-Maximum
				frequency

Eight different speeds can be set through three numerical input terminals(preset speed terminals 1-3). At this time, P0-02 is set as 1, numerical input terminals selected are defined as 3, 4 and 5 orderly and represented by K1, K2 and K3.

The following table describes the relationship between numerical input terminal and corresponding speed:

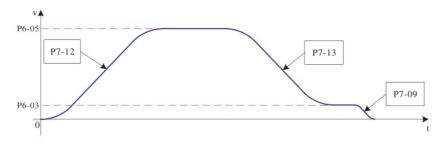
K3	K2	K1	Frequency Setting	Corresponding Parameter
OFF	OFF	OFF	Preset Speed 0	P6-00
OFF	OFF	ON	Preset Speed 1	P6-01
OFF	ON	OFF	Preset Speed 2	P6-02
OFF	ON	ON	Preset Speed 3	P6-03
ON	OFF	OFF	Preset Speed 4	P6-04
ON	OFF	ON	Preset Speed 5	P6-05
ON	ON	OFF	Preset Speed 6	P6-06
ON	ON	ON	Preset Speed 7	P6-07

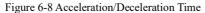
A1200 elevator inverter can select the present target running frequency through preset speeds commands. For example, when preset speed 2 is selected, A1200 elevator inverter will take P6-02 parameter as the present target running frequency of inverter. Therefore, during running of the elevator, the master controller of the system will select and input different preset speeds into A1200 elevator inverter according to conditions, thus realizing control on elevator running speed.

Function Code	Name		Default	Minimum Unit	Setting Range
P6-08	Preset Speed	0	1	1	1-4
	Acceleration/Deceleration				
	Curve				
P6-09	Preset Speed	1	1	1	1-4
	Acceleration/Deceleration				
	Curve				
P6-10	Preset Speed	2	1	1	1-4
	Acceleration/Deceleration				
	Curve				
P6-11	Preset Speed	3	1	1	1-4
	Acceleration/Deceleration				
	Curve				
P6-12	Preset Speed	4	1	1	1-4
	Acceleration/Deceleration				
	Curve				
P6-13	Preset Speed	5	1	1	1-4
	Acceleration/Deceleration				
	Curve				
P6-14	Preset Speed	6	1	1	1-4
	Acceleration/Deceleration				
	Curve				
P6-15	Preset Speed	7	1	1	1-4
	Acceleration/Deceleration				
	Curve				

A1200 offers four groups of acceleration/deceleration time. See description of P7 Group for detail. Function codes P6-08 --P6-15 can be used to set the acceleration/deceleration time of each preset speed, i.e., 1-4. So that different curves have different acceleration/deceleration time when the elevator runs in different statuses.

Special Note: Under acceleration mode, adopt the acceleration time of target speed and the S curve setting of this acceleration time; under deceleration mode, adopt the deceleration time of starting speed and the S curve setting of this deceleration time.


For example: P6-01=0.00Hz; P6-03=8.00Hz; P6-05=48.00Hz; P6-09=2; P6-11=3; P6-13=4.


When the speed is accelerated from P6-01 to P6-05, the acceleration time adopted is the acceleration time 4 selected by P6-13 (P7-12);

When the speed is decelerated from P6-05 to P6-3, the deceleration time adopted is the deceleration time 4 selected by P6-13(P7-13);

When the speed is decelerated from P6-03 to P6-01, the deceleration time adopted is the deceleration time 3 selected by P6-11(P7-09).

This is a complete running process when the elevator is under preset speeds control mode. During this process, high-speed acceleration time and deceleration time are generally set as 3-4s. However, during the deceleration process from crawling to zero speed, the deceleration time parameter may be different from normal deceleration time. In such example, increase P7-05 properly can ensure smooth transition of speed during stop process. See figure 6-8:

A1200 elevator inverter can form different acceleration/deceleration curves through eight preset speeds and four time parameters.

Function Code	Name	Default	Minimum Unit	Setting Range
P6-16	Inspection Speed	0	1	0-7

This function code is used to set the preset speed for inspection. See Chapter 7 Inspection Running.

Function Code	Name	Default	Minimum Unit	Setting Range
P6-17	Power Failure	0	1	0-2
	Emergency			
	Running			

0: Disable the power failure emergency running function

1: UPS power supply running

2: 48V battery supply running

For use of the power failure emergency running function, see Chapter 7.

Function Code	Name	Default	Minimum Unit	Setting Range
P6-18	Minimum Input of	0.00V	0.01V	0.00-10.00V
	Analog			
P6-19	Corresponding	0.0%	0.1%	0.0-100.0%
	Setting of			
	Minimum Input of			
	Analog			
P6-20	Maximum Input	10.00V	0.01V	0.00-10.00V
	of Analog			
P6-21	Corresponding	100.0%	0.1%	0.0-100.0%
	Setting of			
	Maximum Input			
	of Analog			
P6-22	Analog Input	0.10s	0.01s	0.00-1.00s

Filter Time		

The function code above defines the speed setting of A1200 series inveter under analog control mode and the relationship between analog input voltage and the setting value represented by analog input. The par of analog input voltage exceeding the maximum input or minimum input range will be calculated as the maximum input or minimum input.

If analog input is current input, 1mA current is equivalent to 0.5V voltage.

If AI1 or AI2 is set in P0-02, then percentage parameter of the speed of this speed channel(formed through P6-18 - P6-22) relative to the maximum frequency or rated frequency is the present speed setting.

Function Code	Name		Default	Minimum Unit	Setting Range
P6-23	Inverter	Function	48	1	0-65535
	1				

This parameter is used to select some function settings of the inverter, each having one purpose, as shown below:

P6-23 Inverter Function 1				
Bit	Function Definition	Meaning	Default	
Bit0	Function of Stop and	0: Disabled	0	
	Remove Current	1: Enabled		
Bit1	Sensorless Compensation	0: Disaled during autotuning	0	
	Function	1: Enabled during autotuning		
Bit2	Stop and Waiting Options	0: The inverter stops when external	0	
		commands are canceled or the waiting		
		time exceeds 5s		
		1: The inverter stops only when		
		external commands are canceled		
Bit4	Upper Limit of Maximum	0: Upper limit of the maximum	1	
	Frequency	frequency(P0-05) is 90.00Hz		
		1: Upper limit of the maximum		
		frequency (P0-05) is the motor rated		
		frequency		
Bit5	Analog Frequency	0: Calculated according to the	1	
	Setting	maximum frequency		
		1: Calculated according to the rated		
		frequency		

Function Code	Name		Default	Minimum Unit	Setting Range
P6-24	Voltage	Setting	0.00V	0.01V	0.00-11.00V
	Under	Motor			
	Overheatin	ng			

This function code generally uses AI2 terminal to judge motor overheating. When P6-24 is not set as 0:

Motor overheating will not be judged by input terminal function of P4 Group; when the voltage input of AI2 terminal is always greater than the voltage set by P6-24 (filter time 0.5s), the inverter

sends the Err39 "motor overheating protection"; if the voltage of AI2 terminal is always lower than P6-24 setting (filter time 2s), motor overheating fault will be reset automatically;

As the resistance of thermometer R2 is 1.33k, it is recommended to set R1 as 2.0k and P6-24 as 3.9V. The wiring mode is as follows:

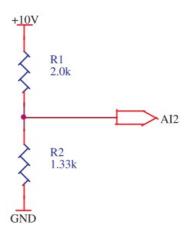


Figure 6-9 Wiring Mode of Thermometer

Wiring mode with the inverter: $\pm 10V$, GND and AI2 in the figure above are respectively connected to $\pm 10V$, GND and AI2 terminal on control board of the inverter.

Function Code	Name	Default	Minimum Unit	Setting Range
P6-25	Inverter Function 2	0	1	0-65535

This parameter is used to select some function settings of the inverter, each having one purpose, as shown below:

P6-25 Inverter Function					
Bit	Function Definition	Meaning	Default		
Bit0	SPI Communication Fault	0: Enabled	0		
	Detection	1: Disabled			
Bit1	PA-03, 05 Property	0: Note1 1 of PA-03 and 05 can only be	0		
	Change	modified under operation panel control			
		mode			
		1: PA-03 and 05 can be modified under			
		all modes			
Bit2	Fault Reset	0: Err16, 17 and 33 can not be reset	0		
		manually			
		1: Err16, 17 and 33 can be reset			
		manually			
Bit3	Sensorless Compensation	0: Disabled during emergency running	0		
	Function	1: Non-disabled during emergency			
		running			
Bit4	Control mode limitation	0: Under terminal commands of synchronous			
		motor, the inverter is limited to closed-loop			

		vector control 1: No restriction	
Bit5	Conditions of Big Speed Deviation	 0: Speed deviation exceeds the setting range of PC-12 and the feedback frequency exceeds 1/4 of the rated frequency; 1: Speed deviation exceeds the setting range of PC-12 	0

Function Code	Name	Default	Minimum Unit	Setting Range
P6-27	Zero Speed Signal	0ms	1ms	0-9999ms
	Output Delay			

When the output frequency is changed to zero, the inverter starts counting and will output zero speed signal after the time reaches this parameter value.

Function Code	Name	Default	Minimum Unit	Setting Range
P6-28	Upper Limit of	8.00Hz	0.01Hz	0.0Maximum
	Emergency			Frequency
	Running Speed			

This function code is used to limit the emergency running speed. When the emergency running speed is detected greater than this value, the inverter will report Err32 fault.

P7 Group: Auxiliary Function Parameter

A1200 elevator inverter offers four groups of acceleration/deceleration time, which correspond to four groups of S curves. Each S curve can be set flexibly according to user's needs.

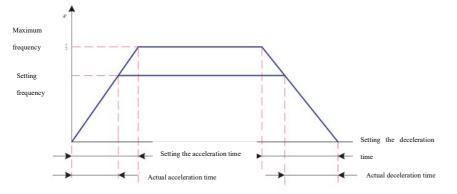
Function Code	Name	Default	Minimum Unit	Setting Range
P7-00	Acceleration Time 1	4.0s	0.1s	1.0-100.0s
P7-01	Deceleration Time 1	4.0s	0.1s	1.0-100.0s
P7-02	S Curve Start Section	40.0%	0.1%	10.0-40.0%
	Proportion			
P7-03	S Curve End Section	40.0%	0.1%	10.0-40.0%
	Proportion			

Function Code	Name	Default	Minimum Unit	Setting Range
P7-04	Acceleration Time 2	4.0s	0.1s	1.0-100.0s
P7-05	Acceleration Time 2	4.0s	0.1s	1.0-100.0s
P7-06	S Curve 2 Start	40.0%	0.1%	10.0-40.0%
	Section Proportion			
P7-07	S Curve 2 End	40.0%	0.1%	10.0-40.0%
	Section Proportion			

Function Code Name	Default	Minimum Unit	Setting Range	
--------------------	---------	--------------	---------------	--

A1200 Series

P7-08	Acceleration Time 3	4.0s	0.1s	1.0-100.0s
P7-09	Acceleration Time 3	20.0s	0.1s	1.0-100.0s
P7-10	S Curve 3 Start	40.0%	0.1%	10.0-50.0%
	Section Proportion			
P7-11	S Curve 3 End	40.0%	0.1%	10.0-50.0%
	Section Proportion			


Function Code	Name	Default	Minimum Unit	Setting Range
P7-12	Acceleration Time 4	1.0s	0.1s	0.5-100.0s
P7-13	Acceleration Time 4	1.0s	0.1s	0.5-100.0s
P7-14	S Curve 4 Start	40.0%	0.1%	10.0-50.0%
	Section Proportion			
P7-15	S Curve 4 End	40.0%	0.1%	10.0-50.0%
	Section Proportion			

These four groups of acceleration/deceleration time are same in meaning. The speed acceleration/deceleration time and characteristics of S curves of each section(preset speeds) through P6-08 --P6-15 when the inverter is running can be selected.

Acceleration time refers to the time t1 required for the speed accelerated from 0Hz to the maximum output frequency (P0-05)

Deceleration time refers to the time t2 required for the speed decelerated from the maximum output frequency (P0-05) to 0Hz.

See the figure below:

When the setting frequency is greater than the maximum output frequency, the actual acceleration/deceleration

When the setting frequency is less than the maximum output frequency, the actual acceleration time is equal to the setting value (setting frequency/maximum frequency). A1200 elevator inverter has four groups of different S curves, the acceleration and deceleration combination of each group are symmetrical. By taking the acceleration of S curve 1: T1 is the parameter defined by P7-02. During this period, the gradient for the output frequency changes (i.e., speed variation rate, same

below) increases gradually. T2 is the time value defined through P7-03. During this time period, gradient for the output frequency changes gradually decreases to zero. During the time period of t1 and t2, the gradient for the output frequency changes is fixed.

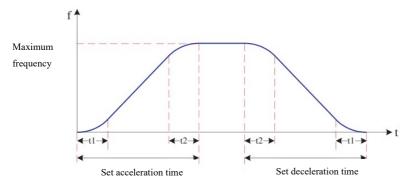


Figure 6-11 S Curve Acceleration/Deceleration

Therefore, under the preset speed control mode, A1200 elevator inverter can offer different S curves for different running periods of the elevator through switching between combinations of preset speeds, which can ensure reasonable speed changes during running and improve users' comfort when they take the elevator.

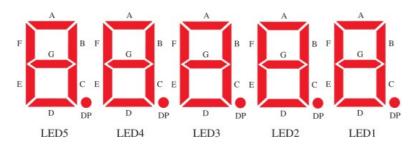
Function Code	Name	Default	Minimum Unit	Setting Range
P7-16	Slipping Test	1.0s	0.1s	0.5-10.0s
	Acceleration Time			

This function code is sued to set the acceleration speed under the slipping test mode. See figure 6-10 for specific use. When conducting slipping test, decrease this parameter appropriately if the slipping effect is not obvious.

Function Code	Name		Default	Minimum Unit	Setting Range
P7-17	Direct	Stop	0.0mm	0.1mm	0.0-6553.5mm
	Setting Distance				

This function code is used to set the running distance when the elevator stops directly. Please refer to section 7.7 for detail.

Function Code	Name		Default	Minimum Unit	Setting Range
P7-18	Actual	Running	0.0mm	0.1mm	0.0-6553.5mm
	Distance	of Direct			
	Stop				


This function code is used to monitor the actual running distance during direct stopping process and assist with debugging. Please see Section 7.7 for detail.

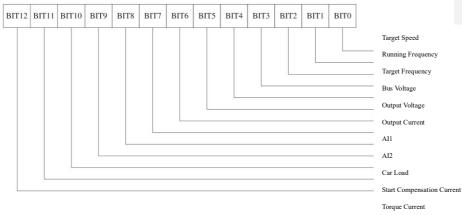
P8 Group: Auxiliary Control Parameter

Function Code	Name	Default	Minimum Unit	Setting Range
P8-00	Status Indicator of Input and	-	-	-
	Output Terminal			

P8-00 indicates the status of input and output terminals. Digital nixie tubes are arranged in the

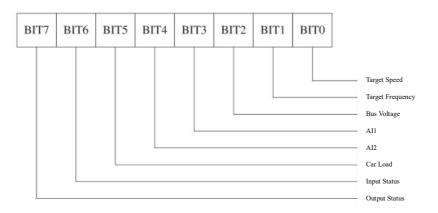
sequence from left to right: 5, 4, 3, 2, 1. The definition of each section of digital nixie tube is as below:

Among them, 3, 4 and 5 represent the status of input terminal and output terminal of the inverter, which are represented by digital sections; 1 and 2 bit are not used.


The definition of each section of digital nixie tubes is as shown below:

Sequence of digital nixie tubes	Sign of digital nixie tubes	Definition of digital nixie tube is
		on
	A	DI1 input enabled (the input point
		is connected to the public terminal)
	В	DI2 input enabled
	С	DI3 input enabled
3	D	DI4 input enabled
	Е	DI 5 input enabled
	F	DI 6 input enabled
	G	DI 7 input enabled
	DP	DI 8 input enabled
4	А	DI 9 input enabled
	В	DI 10 input enabled
	C-F-DP	Not used
	А	FM output enabled
5	В	DO1 input enabled
	С	DO2 input enabled
	D	Relay 1 output enabled
	Е	Relay 2 output enabled
	F-H-DP	Not used

Function Code	Name	Default	Minimum Unit	Setting Range
P8-01	LED Running Display	32767	1	1-32767
	Parameter			


Input Status

Output Status

If it is required to display all parameters above during running, change its binary value 1 as decimal value and set it into P8-01.

Function Code	Name	Default	Minimum Unit	Setting Range
P8-02	LED Stop Display	255	1	1-255
	Parameter			

If it is required to display all parameters above during running, change its binary value 1 as decimal value and set it into P8-02.

Function Code	Name		Default	Minimum Unit	Setting Range	
P8-03	Elevator	Rated	1.600m/s	0.001m/s	0.001-8.000m/s	
	Speed					
This parameter is used to set the car speed when the motor runs at rated frequency.						

Function Code	Name	Default	Minimum Unit	Setting Range
P8-04	Radiator	-	1°C	0-100℃
	Temperature			

This function code displays the radiator temperature in contact with IGBT. The overtemperature protection value of IGBT of different models may be different. A1200 elevator inverter has

automatic processing procedure inside.							
Function Code	Name	Default	Minimum Unit	Setting Range			
P8-05	Control Board	-	0.01	0.00-99.99			
	Software Version						
This function code represents the version no. of the control board software.							

Function Code	Name		Default	Minimum Unit	Setting Range
P8-07	Setting	Running	0h	1h	0-65500h
	Time				

This function code is used to preset the running time of the inverter.

When the accumulated running time (P8-08) reaches to the running time set, the multi-function digital DO of the inverter outputs the signal of running time reach, and the inverter stops running. If P8-07 is set as 0, this function is disabled.

Function Code	Name	Default	Minimum Unit	Setting Range
P8-08	Accumulated	0h	1h	0-65500h
	Working Time			
P8-09	Accumulated	0s	1s	0-3600s
	Seconds			

When the inverter is running, P8-09 will be increased once per second and will be reset when it reaches to 3600h. Meanwhile, P8-08 accumulates 1.

Function Code	Name		Default	Minimum Unit	Setting Range
P8-10	High Bit	of	0	1	0-9999
	Running Times				
P8-11	Low Bit	of	0	1	0-9999
	Running Times				

When the elevator is running, each time the elevator runs, the running times of A1200 elevator inverter will add 1. When the low bit of running times exceeds 9999, the time will be added to the high bit. Therefore, 1 of P8-10 refers to the actual running times 10000.

Function Code	Name	Default	Minimum Unit	Setting Range
P8-12	Short Circuit Protection	0	1	0, 1
	Detection Between			
	Circuit and Ground			

0: Disabled

1: Enabled

This function code is used to determine whether to detect motor short circuit to ground when the inverter is powered on. If this function is enabled, the inverter has short period of output when the inverter is powered on.

Function Code	Name	Default	Minimum Unit	Setting Range
P8-17	Year	2014	1	2000-2100
P8-18	Month and Day	2014	0101	0101-1231
P8-19	Hour and Minute	00.00	00.01	00.00-23.59

This function code is used to set the inverter time.

P9 Group: Protection Function Parameter						
Function Code	Name	default	Minimum Unit	Setting Range		
P9-09	Fault Automatic Reset	0	1	0-3		
	Times					

When the inverter adopts fault automatic reset function, this function code is used to the set the automatic reset times within 1h after occurrence of fault. When the times exceed this value, the inverter will be in standby mode, waiting for inspection.

Function Code	Name	Default	Minimum Unit	Setting Range
P9-11	Fault Automatic Reset	1.0s	0.1s	0.1-100.0s
	Interval			

This function code refers to the waiting time from fault alarm to automatic reset.

Function Code	Name			default	Minimum Unit	Setting Range
P9-12	Input	Phase	Loss	1	1	0, 1
	Protectio	on				

0: Disabled

1: Enabled

This function code is used to determine whether to conduct input phase loss protection.

Function Code	Name			Default	Minimum Unit	Setting Range
P9-13	Output	Phase	Loss	1	1	0-3
	Protection	1				

This function code is used to determine whether to conduct output phase loss protection.

P9-13 Output Phase Loss Protection						
Bit	Function Definition	Meaning	Default			
Bit0	Output Phase Loss	0: Disabled; 1: Enabled	1			
	Detection During Running					
Bit1	Output Phase Loss	0: Disabled; 1: Enabled	1			
	Detection At Start					

Function Code	Name	Default	Minimum Unit	Setting Range
P9-14	First Fault Type	0	1	0-60
P9-15	First Fault Subcode	0	1	0-999
P9-16	First Fault Month/Day	0	1	0-1231
P9-17	First Fault Time	0	0.01	00.00-23.59
P9-18	Second Fault Type	0	1	0-60
P9-19	Second Fault Subcode	0	1	0-999
P9-20	Second Fault Month/Day	0	1	0-1231
P9-21	Second Fault Time	0	0.01	00.00-23.59
P9-50	Tenth Fault Type	0	1	0-60
P9-51	Tenth Fault Subcode	0	1	0-999
P9-52	Tenth Fault Month/Day	0	1	0-1231
P9-53	Tenth Fault Time	0	0.01	00.00-23.59

P9-54	Latest Fault Type	0	1	0-60
P9-55	Latest Fault Subcode	0	1	0-999
P9-56	Latest Fault Month/Day	0	1	0-1231
P9-57	Latest Fault Time	0	0.01	00.00-23.59
P9-58	Latest Logic Information	0	1	0-65535
P9-59	Latest Setting Frequency	0.00Hz	0.01Hz	0.00-99.00Hz
P9-60	Latest Feedback Frequency	0.00Hz	0.01Hz	0.00-99.00Hz
P9-61	Latest Bus Voltage	0.0V	0.1V	0.0-6500.0V
P9-62	Latest Output Voltage	0V	1V	0-65000V
P9-63	Latest Output Current	0.00A	0.01V	0.00-650.00A
P9-64	Latest Torque Current	0.00A	0.01A	0.00-650.00A
P9-65	Latest Output Power	0.00KW	0.01KW	0.00-99.99KW
P9-66	Latest Input Function Status 1	0	1	0-65535
P9-67	Latest Input Function Status 2	0	1	0-65535
P9-68	Latest Output Function Status 1	0	1	0-65535
P9-69	Latest Output Function Status 2	0	1	0-65535

This function parameter group records the type, subcode and date & time of occurrence of the latest 11 faults; and the logic status, output frequency, output current, bus voltage, input and output status and other information upon occurrence of the last fault.

Please see Chapter 8 for detailed definition of fault type.

PA Group: PG Parameter

A1200 elevator inverter offers induction motor vector control and permanent magnet synchronous motor vector control. Configure different rotary encoder interface cards(PG card) according to the encoder selected and set following parameters correctly according to specific model of encoder and PG card.

Function Code	Name	Default	Minimum Unit	Setting Range
PA-00	Encoder Pulse Count	1024	1	100-9999

Rotary encoder of motor is essential for general elevator application. PA-00 refers to the pulse count of rotary encoder per rotation. During use, users must set this parameter properly, otherwise it may result in overcurrent and other abnormalities during running.

Function Code	Name	Default	Minimum Unit	Setting Range
PA-01	Encoder Disconnection	1.0s	0.1s	0.0-10.0s
	Detection Time			

If the pulse signal of encoder is lost when the elevator is running, it is impossible to control motor properly. A1200 elevator inverter will detect the pulse signal of rotary encoder all the time. When it detects that the pulse signal abnormality lasts longer than the time set by PA-01, A1200 elevator

inverter will send alarm (encoder fault) and stop running. When PA-01 is set as 0, alarm function is canceled.

Function Code	Name	Default	Minimum Unit	Setting Range
PA-03	Magnetic Pole Angle of	0.0	0.1	0.0-359.9
	Encoder			

When A1200 elevator inverter conducts control on permanent magnet synchronous motor, it requires the initial angle of encoder to judge the rotor position of motor. In order to ensure high accuracy control in different directions, A1200 records the initial angle of encoder through PA-03. This function code is acquired by autotuning the encoder angle during motor autotuning , and can be set by users themselves if they have understood the system conditions.

Only when this parameter is set properly, A1200 elevator inverter can control the synchronous motor; but this parameter is not required for induction motor control.

By default, PA-03 and 05 (magnetic pole angle and wiring mode) can only be modified when P0-01=1; after changes, P0-01 can be changed as 1 after the inverter is powered on again.

Function Code	Name	default	Minimum Unit	Setting Range
PA-04	Present Angle of Encoder	0.0	0.1	0.0-359.9

During control on permanent magnet synchronous motor, encoder will feedback the position of motor rotor to PA-04 of the inverter timely. This parameter is the key for high accuracy control of permanent magnet synchronous motor.

PA-04 has power failure memory function and is only relative to synchronous motor control and has no relation with induction motor control.

Function Code	Name	Default	Minimum Unit	Setting Range
PA-05	Wiring Mode	0	1	0-15

PA-05 is enabled only for synchronous motor application, and represents the wiring combination mode of the motor.

Function Code	Name	Default	Minimum Unit	Setting Range
PA-06	PG Card Frequency	1	1	1-256
	Division Coefficient			
	Ratio			

When the direct stop function is enabled, the inverter mainboard requires to acquire the pulse signal of encoder through the frequency division output terminal of PG card. So it is required to set this parameter as the frequency division factor of PG card.

With regards to the frequency division coefficient ration of PG card, please refer to the 3.2.3.4 Wiring & Description of PG Card of Special Rotary Encoder Interface Board of the Elevator.

PB Group: Communication Parameter (Not Used)

PC Group: Special Enhancement Function Parameter

Function Code	Name	de	efault	Minimum Unit	Setting Range
PC-00	Command Abr	normality 1		1	0, 1
	Action				

0: Ramp-to stop normally

1: Lock output immediately

Command abnormality refers to that running commands of A1200 are disabled suddenly when the

elevator is running (see the figure below). At this time, A1200 will process the abnormality according to PC-00. Ramp-to-stop refers to that the inverter will slow down steadily and stop according to normal control logic to avoid sudden elevator speed variation; locking output immediately is to turn off the brake immediately to cut off running contactor output.

FWD	REV	Meaning of Commands
OFF	OFF	Disabled
ON	OFF	Forward
OFF	ON	Reverse
ON	ON	Disabled

Function Code	Name	Default	Minimum Unit	Setting Range
PC-01	Abnormality	3.0s	0.1s	0.0-300.0s
	Deceleration Time			

This function code refers to the time required for the inverter speed decelerated from the maximum frequency to 0Hz in case of inverter fault.

Function Code	Name	Default	Minimum Unit	Setting Range
PC-02	Up Speed Detection	45.00Hz	0.01Hz	0.00HzMaximum
	Level			frequency
	Down Speed	45.00Hz	0.01Hz	0.00HzMaximum
	Detection Level			frequency

PC-02 and PC-03 are the method adopted by A1200 elevator inverter to forced the elevator to slow down. These two function codes represent different judgment level when the elevator goes up and down (Note: the forward command received by the inverter, the elevator goes up; upon receiving the reverse command, the elevator will goes down correspondingly). The inverter will check if the present running frequency exceeds the detection level set by PC-02 and PC-03 immediately upon input of up(down) speed judgment signal (forced deceleration switch signal); if the present running frequency exceeds the detection level, the inverter will ramp to stop according to the deceleration time set by PC-01. Besides, when the elevator goes up, the down frequency judgment signal is disabled and vice verse.

Therefore, the forced deceleration running principle of A1200 elevator inverter is as follows:

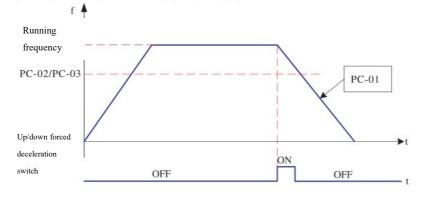


Figure 6-12 Forced Deceleration Running Principle

Function Code	Name		Default	Minimum Unit	Setting Range
PC-04	Advance	Door	5.00Hz	0.01Hz	0.00HzMaximum
	Opening	Judgment			frequency
	Level				

With A1200 elevator inverter, it will be very convenient to complete the advance door opening function: When the elevator runs slowly and if the output frequency is lower than the parameter set by PC-04, A1200 elevator inverter will output the advance door opening signal through the output terminal until the elevator stops.

Function Code	Name	Default	Minimum Unit	Setting Range
PC-05	Frequency Detection	50.00Hz	0.01Hz	0.00HzMaximum
	Level 1(FDT			frequency
	Frequency 1)			
PC-06	Frequency Detection	50.00Hz	0.01Hz	0.00HzMaximum
	Level 2(FDT			frequency
	Frequency 2)			
PC-07	Frequency Detection	5.0%	0.1%	0.0-100.0%
	Lag			
	(FDT Lag)			

As shown in the figure below, PC-05 -PC-07 are parameters relative to FDT output signals. FDT1 and FDT 2 may be different. FDT lag: FDT Frequency * PC-07.

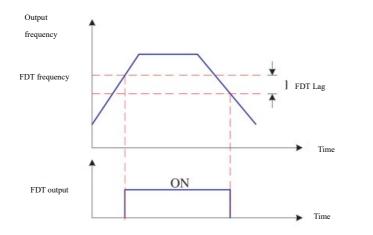


Figure 6-13 FDT Signal Output Principle

Function Code	Name		Default	Minimum Unit	Setting Range
PC-08	Frequency	Reach	0.0%	0.1%	0.0-100.0%
	Detection Width				

When the output frequency of the inverter reaches to the setting frequency, this parameter can adjust its detection width. As shown below:

Detection width value: Maximum frequency×PC-08

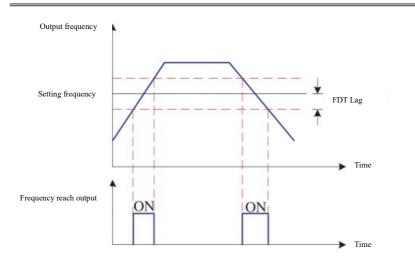


Figure 6-14 Frequency Reach Signal Output Principle

Function Code	Name	Default	Minimum Unit	Setting Range
PC-09	Overspeed Judgment Level	115%	1%	80-120%
PC-10	Overspeed Detection Delay	1.0s	0.1s	0.0-5.0s

A1200 elevator inverter has overspeed detection function and it can judge if the present running frequency is excessive based on the function parameter setting of PC-09. If the accumulated overspeed time is greater than PC-10, the inverter is judged in overspeed status.

Among these two function codes, overspeed judgment level is the percentage of maximum frequency, i.e., 100% corresponds to the maximum frequency.

When the inverter is in overpseed status, it will take corresponding measures according to PC-11 function setting. Ramp to stop under abnormality is that the inverter will ramp to stop according to the deceleration time set by FC-01.

Function Code	Name	Default	Minimum Unit	Setting Range
PC-11	Overspeed Action	1	1	0-2

0: Ramp to stop under abnormality

1: Send alarm immediately and lock output

2: Continue to run

Ramp to stop under abnormality is to ramp to stop according to the deceleration time set by PC-01.

Function Code	Name		default	Minimum Unit	Setting Range
PC-12	Speed I	Deviation	30%	1%	0-50%
	Judgment Level				
PC-13	Speed I	Deviation	1.0s	0.1s	0.0-5.0s
	Detection Delay				

A1200 elevator inverter has speed deviation detection function and can judge if the deviation between the present running frequency and the setting frequency is too large. If the accumulated

time of large deviation is greater than PC-13, it will be considered that the present speed deviation is too large.

Of these two function codes, speed deviation judgment level is the percentage of maximum frequency.

If the speed deviation is too large, A1200 will take corresponding measures according to function setting of PC-14.

Function Code	Name		Default	Minimum Unit	Setting Range
PC-14	Action	Upon	2	1	0-2
	Excessive	Speed			
	Deviation				

0: Ramp to stop under abnormality

1: Send alarm and lock output immediately

2: Continue to run

Ramp to stop under abnormality is to ramp to stop according to the deceleration time set by PC-01 PD Group: Special Function Parameter

Function Code	Name		Default	Minimum Unit	Setting Range
PD-00	Torque Boost		1.0%	0.1%	0.1-30.0%
PD-01	Torque	Boot	50.00Hz	0.01Hz	0.00-Maximum
	Frequency				Frequency

Under V/F control mode, in order to compensate low-frequency torque characteristics, conduct boost compensation for the inverter output frequency under low frequency.

Excessive torque boost may result in motor overheating and overcurrent of inverter. Generally, torque boost shall not exceed 10%.

Effective adjustment of this parameter can avoid overcurrent upon start; for overload, it is recommended to increase this parameter. When the load is light, decrease this parameter value. If the torque boost is set as 0, the inverter adopts automatic torque boost.

Under the torque boost frequency set by PD-01, torque boost is enabled. if the boost frequency exceeds this setting frequency, the torque boost is invalid.

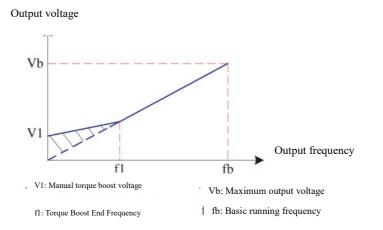


Figure 6-15 Manual Torque Boost

Function Code	Name	default	Minimum Unit	Setting Range
PD-02	Slip Compensation	100.0%	0.1%	0.2-200.0%
PD-03	Oscillation	20	1	0-100
	Suppression Gain			

PD-o2 slip compensation is enabled under V/F control mode. Setting this parameter can compensate slip caused by loads under V/F control mode to make the variation of motor rotation speed along with load changes smaller. Generally 100% corresponds to the rated slip of motor with rated load. Adjust the slip factor according to following principles: Under rated load, if the slip compensation factor is set as 100%, the rotation speed of inverter motor is basically close to the setting speed. If the load is lighter than rated load, this factor may be less than 100%, otherwise this factor may be slightly greater than 100%.

PD-03 Oscillation Suppression Gain shall be set as 0 if there is no motor oscillation. Only when there exists obvious motor oscillation, which results in the motor runs abnormally, increase this gain. The higher the gain is, the better the oscillation suppression effect will be. Setting mode of this parameter: This gain shall be set lower as much as possible on the condition of ensuring effective motor oscillation suppression effect.

Function Code	Name	Default	Minimum Unit	Setting Range
PD-04	Inverter Function 3	0	1	0-65535

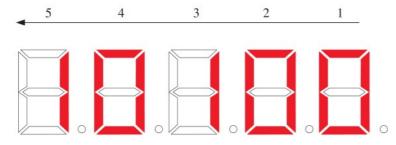
This parameter is used to set some functions of the inverter, each bit having a purpose, as shown below:

PD-04 Inverter Function 3					
Bit	Function Definition	Default			
Bit0	Induction Motor Current Loop	0: Fixed value	0		
	Parameter	1: Set by P2-06 and			
		P2-07			

Function Code	Name	Default	Minimum Unit	Setting Range
PD-05	Zero Servo Current	15.0%	0.1%	1.0-50.0%
	Factor			
PD-06	Zero Servo Speed	0.50	0.01	0.05-1.00
	Loop KP			
PD-07	Zero Servo Speed	0.60	0.01	0.05-2.00
	Loop K1			

This parameter group is used to regulate elevator start when there is no weighing sensor. Please see Section 7.6 for specific description.

PU Group: Monitoring Parameter


Function Code	Name	Default	Minimum Unit	Setting Range
PU-00	Pre-torque Current	0.0%	0.1%	-200.0-200.0%

This function code is used to display the percentage of pre-torque current in the rated current (display with "+" and "-", power-driven or generating state).

Function Code	Name	Default	Minimum Unit	Setting Range
PU-01	Logic Information	0	1	0-65535

Display the elevator status parameter.

As shown below, five digital nixie tubes are represented by 1, 2, 3, 4 and 5 respectively from right to left. Combination of 1 and 2 indicates the running status of inverter; 3 refers to the present preset speed; 4 represents direction commands; 5 indicates if running is permitted at present. Specific contents are as follows:

5		4		3		2		1
Tern	ninal	Dir	ection	Pre	eset Speed		Running status	
Run	ning	Cor	nmand	Set	tting			
Pern	nission							
0	Running	0	No command	0	Preset speed 0	00		Standby status
	disabled							
1	Running	1	Up command	1	Preset speed 1	01	Running co	ntactor control
	enabled							
		2	Down	2	Preset speed 2	02	Brake open	ing control
			command					
				3	Preset speed 3	03	Start zero s	peed running
				4	Preset speed 4	04	Normal cur	ve running
				5	Preset speed 5	05	Emergency	running
				6	Preset speed 6	06	Start freque	ency
				7	Preset speed 7	07	Running co	ntactor release
						08	Direct stop	control
						09	Ramp to sto	op
						10	Stop zero s	peed holding
						11	Brake relea	se control
						12	Stop status	
						13	Slip test rui	nning
						14	Abnormal 1	amp to stop

Figure 6-16 Example of Logic Information

Function Code	Name	default	Minimum Unit	Setting Range
PU-02	Setting Frequency	0.00Hz	0.01Hz	0.00-99.00Hz
PU-03	Feedback Frequency	0.00Hz	0.01Hz	0.00-99.00Hz
PU-04	Bus Voltage	0.0V	0.1V	0.0-65000V
PU-05	Output Voltage	0V	1V	0-65000V
PU-06	Output Current	0.00A	0.01A	0.00-650.00A

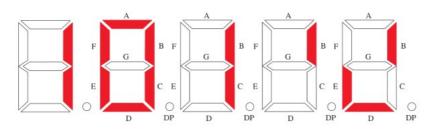
PU-07	Output Torque	0.0%	0.1%	0.0-200.0%
PU-08	Torque Current	0.00A	0.01A	0.00-650.00A
PU-09	Output Power	0.00kW	0.01kW	-99.99-99.99kW

These function codes respectively display present performance status(output power is displayed with "+" and "-").

Function Code	Name	Default	Minimum Unit	Setting Range
PU-10	Car Load	0.0%	0.1%	0.0-100.0%

When the weighing pre-torque function is enabled, this function code displays the car load acquired by weighing.

Function Code	Name	Default	Minimum Unit	Setting Range
PU-11	Car Speed	0.000m/s	0.001m/s	0.000-65.000m/s


Display the car running speed. In order to ensure correct display of this parameter, it is required to set P8-03 properly.

Function Code	Name	Default	Minimum Unit	Setting Range
PU-12	Communication	0	1	0-65535
	Interference			

Respectively display the communication quality between the control board and the driver board. 0-9 represents the communication level. The larger the value is, the communication interference is larger and the communication quality will be poor.

Function Code	Name	Default	Minimum Unit	Setting Range
PU-13	Input Function Status 1	0	1	0-65535
PU-14	Input Function Status 2	0	1	0-65535
PU-15	Output Function Status 1	0	1	0-65535
PU-16	Output Function Status 2	0	1	0-65535

E D C B A

Figure 6-17 Example of Input Status

As shown in figure 6-17, the five digital nixie tubes from right to left are respectively numbered as ABCED; for PU-13 and PU-14 input and output status, values displayed by ED represent the function codes of input and output terminal (for example, 10 represents running contactor feedback); if C is 1, this signal is enabled; if C is 0, this signal is disabled; each section of AB represents one function status. There are 16 sections of digital nixie tubes in total, representing 16 function status. As shown above, CDE indicate the running contactor feedback signal is enabled. Meanwhile, through AB, it can be seen that function code is enabled when it is 10, 2, 4 and 5.

PU-13 Input Function Status 1

Function Code	Function Definition	Function Code	Function Definition
0	Not used	8	Inspection signal
1	Forward command	9	Emergency input
2	Reverse command	10	Running contactor
			feedback
3	Preset speed terminal 1	11	Brake feedback
4	Preset speed terminal 2	12	Weighing terminal 1
5	Preset speed terminal 3	13	Weighing terminal 3
6	Fault reset command	14	Weighing terminal 3
7	Enable control signal	15	Weighing terminal 4

PU-14 Input Function Status 2

Function Code	Function Definition	Function Code	Function Definition
16	External fault signal	24	Not used
17	Motor overheating signal	25	Not used
18	Up speed judgment	26	Not used
19	Down speed judgment	27	Not used
20	Preset speed logic 1	28	Not used
21	Preset speed logic 2	29	Not used
22	Direct stop command	30	Not used
23	Not used	31	Not used

PU-15 Output Function Status 1

Function Code	Function Definition	Function Code	Function Definition
0	Not used	8	Bus undervoltage
1	Running	9	FDT1 output
2	Zero speed running	10	FDT2 output
3	Zero speed signal	11	Frequency reach
4	Fault signal	12	Overspeed output
5	Running contactor output	13	Overload pre-alarm
	control		
6	Brake output control	14	Running time reach
7	Advance door opening	15	Running ready
	signal		

PU-16 Output Function Status 2

Function Code	Function Definition	Function Code	Function Definition
16	Contact adhesion output	24	Not used
17	Releveling output	25	Not used
18	Light load running output	26	Not used
19	Not used	27	Not used
20	Not used	28	Not used
21	Not used	29	Not used
22	Not used	30	Not used
23	Not used	31	Not used

Function Code	Name	Default	Minimum Unit	Setting Range		
PU-17	AI1 Voltage	0.00V	0.01V	0.00-20.00V		
This function code displays the voltage of analog input terminal AI1.						
Function Code	Name	default	Minimum Unit	Setting Range		
PU-18	AI2 Voltage	0.00V	0.01V	0.00-20.00V		
This function co	This function code displays the voltage of analog input terminal AI2.					
Function Code	Name	default	Minimum Unit	Setting Range		
PU-19	AO1 Voltage	0.00V	0.01V	0.00-20.00V		
This function co	This function code displays the voltage of analog input terminal AO1.					
Function Code	Name	default	Minimum Unit	Setting Range		
PU-20	Start Slip Pulse Count	0	1	0-65535		

When the sensorlessrestart function is enabled (F3-09=5), this parameter is used to observe the slip condition upon start. With regards to debugging upon sensorlessrestart, please refer to section 7.6.

Function Code	Name	default	Minimum Unit	Setting Range
PU-21	Pulse Count Output of	0	1	0-65535
	PG Card Per Second			

When the direct stop function is enabled, it is required to connect the frequency division signal of PG card to the corresponding terminals of IO expansion board and then transmit the signal to the master control panel of the inverter. During running, user can check if the pulse signal of PG card is normal through this parameter.

PF Group: Manufacturer Parameter (Not Used)

PP Group: User Parameter

Function Code	Name	Default	Minimum Unit	Setting Range
PP-00	User Password	0	1	0-65535

The password protection function is enabled as long as this function code is set as any non-zero digital.

00000: Clear the password set by former users and disable the password protection function.

After user passwords are set and come into effect, A1200 prohibits users to view parameters.

Please keep your password in mind. In case the password is set incorrectly or has been forgotten, please contact the manufacturer.

Function Code	Name	Default	Minimum Unit	Setting Range
PP-01	Parameter Update	0	1	0, 1, 2

0: No operation

1: The inverter resets the parameter to the default.

2: The inverter clears recent fault records.

Function Code	Name		Default	Minimum Unit	Setting Range
PP-02	User	Setting	0	1	0, 1
	Examination				

When PP-02 is set as 1, the LED operation panel only displays parameters different from the

default, convenient for users to check setting value and troubleshoot problems. If this function code is set as 0, the LED operation panel will display all parameters.

Chapter 7 Application & Debugging

This chapter mainly introduces several application modes of A1200 elevator inverter and its typical working conditions, such as power failure emergency running and inspection running.

7.1 Preset Speed Control Mode

Preset speed control mode is a common elevator control and application mode, which is characterized by strong anti-interference ability, better adaptability and simple to realize. However, under traditional preset speed control mode, acceleration/deceleration curves of different preset speeds are same and influence one another, thus causing user can not take care of all aspects. A1200 elevator inverter is specially designed against characteristics of preset speed control mode: Each preset speed can flexibly correspond to different acceleration/deceleration curve, facilitating users' debugging in actual application.

7.1.1 Wiring diagram of preset speed control system

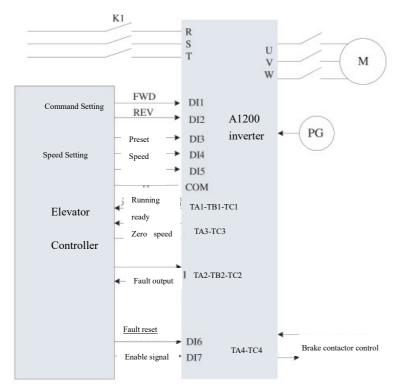
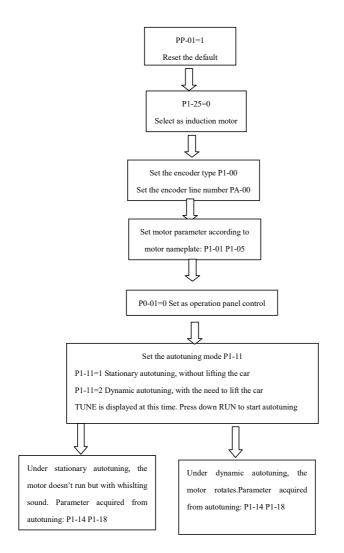


Figure 7-1 Wiring Diagram of Preset Speed Control

Note:


◆ 1) In figure 7-1, except TA2-TB2-TC2, function parameters of other input and output points have been configured at the factory and can only be changed when necessary;

◆ 2) It is recommended to use RELAY2 of the inverter as the brake control input point and connect it to the brake control circuit of the system.

7.1.2 Parameter setting

This part adjust parameters by three steps against the most typical application mode according to the debugging sequence of the elevator: Motor autotuning, inspection running and normal running. 1. Motor autotuning

1) Induction motor autotuning (stationary, dynamic)

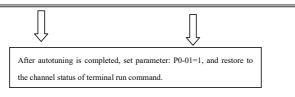
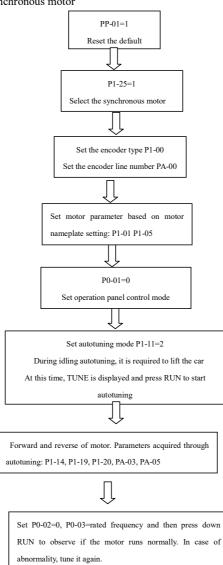
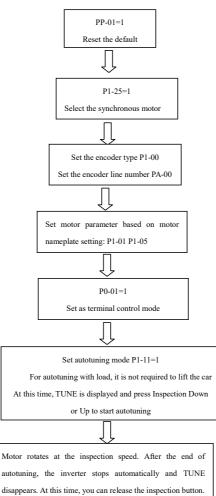


Figure 7-2 autotuning Procedure of Induction Motor

Description: If open-loop vector control or V/F control mode is selected, users do not need to set the encoder type and encoder line number. For elevator running control, closed-loop vector control mode is recommended.

2) Idling autotuning of synchronous motor




Figure 7-3 Idling Autotuning Procedure of Synchronous Motor

Description: It is recommended to conduct autotuning for several times. Moreover, if the PA-03 error is within $5\,^\circ\,$, PA-05 remains unchanged and then conduct commissioning.

3) Autotuning for synchronous motor with load

a) Method of application

For convenience of use of synchronous motor in the field, A1200 elevator inverter designs one kind of encoder angle autotuning mode for synchronous motor with a load. With this method, user can complete encoder angle autotuning without the need to take off the steel rope of elevators. Operation procedures are as follows:

Press the Inspection Up or Down button again to observe if the motor runs normally. In case of abnormality, please tune the motor again.

Figure 7-4 Autotuning Procedure for Synchronous Motor with Load

b) Notes

①After autotuning, there will be 2s for the inverter to save parameters. During this period, the inverter will not respond to any input commands.

⁽²⁾Important: Angle autotuning for motor with load must be performed by professional personnel. Moreover, it is required to ensure there is no person in the hoistway to avoid danger.

③At the beginning of the autotuning, disable function software that uses sensorless pre-torque compensation(P6-23BIT1=0) to avoid abnormality;

④ If autotuning can not be completed normally, exchange any two output power wires UVW of the inverter and then conduct autotuning again;

2. Inspection running

After autotuning is completed successfully, the inverter will enter the inspection running phase. Before the inverter enter the inspection running, following parameters shall be set:

a) Inspection speed (P6-16)

b) Inspection preset speed frequency (P6-00 -P6-07);

c) Preset speed acceleration/deceleration curve for inspection running (P6-08 - P6-15);

d) Specific acceleration/deceleration time of preset speeds for inspection running (P7-00 - P7-15).

Supplementary instruction:

a) P6-16 is used to set the preset speeds for inspection running. If preset speed 2 is adopted, P6-16 shall be set as 2;

b) Then set the running frequency of inspection speed (preset speed 2, P6-02). The inverter output frequency during inspection running is equal to the setting frequency;

c) After the running frequency of inspection speed is set, it is required to select the acceleration/deceleration curve P6-10(default curve: S curve 1) for inspection speed (preset speed 2);

d) If it is required to modify the acceleration/deceleration time of the acceleration/deceleration curves (default curve: S curve 1), P7-00 -P7-03 must be reset.

Description: If the terminal function adopted by the inverter system is not identical to the default function, please check and set corresponding parameters of P4 and P5 groups correctly before inspection running.

3. Normal running

When the elevator enters into the normal debugging phase, it is required to debug the inverter for comfort of elevator. Specific parameters are as follows:

a) Before the elevator runs, please confirm the sequence of encoder wiring and inverter output to phase U, V and W of motor side haven't been exchanged after motor autotuning.

b) Set the target running frequency of each preset speed of speeds.

c) Set corresponding acceleration/deceleration curves for each preset speed.

d) Set the acceleration/deceleration time of each curve and the start and end section of each

curve according to comfort.

e) Adjust parameters of P2 group and P3 group based on the comfort during running and at start and stop.

4. Application example

Let us suppose the preset speeds of the inverter are as follows:

Preset speed 2 is adopted for inspection, the target running frequency is 10Hz and the acceleration/deceleration curve is S curve 4;

Preset 3 is adopted for crawling, the target running frequency is 3Hz and the acceleration/deceleration curve is S curve 3;

Preset speed 7 is adopted for high speed, the target running frequency is 48Hz and the acceleration/deceleration curve is S curve 1;

Preset	Function	Name	Setting	Remarks
Speed	Code		value	
Inspection	P6-16	Inspection Speed	2	
	P6-02	Preset Speed 2	10	
	P6-10	Preset Speed 2 S Curve	4	If it is required to modify S
				curve 4, please set P7-12 -
				P7-15 as required
Crawl	P6-03	Preset speed 3	3	
	P6-11	Preset speed 3 S curve	3	If it is required to modify S
				curve 3, please set P7-08 -
				P7-11 as required
High speed	P6-07	Preset speed 7	48	
	P6-15	Preset speed 7 S curve	1	If it is required to modify S
				curve 1, please set P7-00 -
				P7-03 as required

Then parameters of corresponding preset speed are set as below:

Note:

• The example above only involves setting of parameters related to speed sections and other parameters required to be modified for preset speed debugging application are exclusive.

7.2 Analog Control Mode

Another common control mode adopted by A1200 series inveter in elevator application: Analog speed setting mode. Under this control mode, the inverter adopts analog input method for speed setting and terminal input for running command. Control and use of the inverter are described below.

7.2.1 Analog control system wiring diagram

System wiring diagram is as follows:

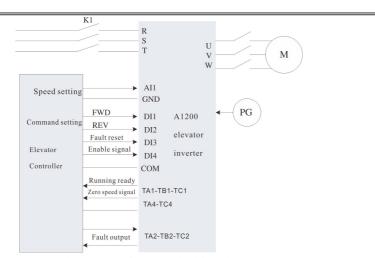


Figure 7-5 Analog Control Wiring Diagram

7.2.2 Parameter setting

The motor autotuning method under the analog speed control mode is same to that of the preset speed control mode. Please conduct motor autotuning by reference to motor autotuning under preset speed control mode.

In the analog control system, the inverter, as a executor, will completely follow commands of the controller (as shown above) and the analog input signal is assumed as 0-+10V input. Following parameters need to be adjusted:

Description	Function Code	Name	Setting Value	
Analog Function	P0-02	Speed	2	
Parameter	P6-19	Corresponding Setting of	0	
		Minimum Input of Analog		
	P6-21	Corresponding Setting of	100	
		Maximum Input of Analog		
	P6-18	Minimum Input of Analog	0	
	P6-20	Maximum Input of Analog	10	
	P6-22	Analog Input Filter Time	0.1	
Motor Encoder	P1 group and	Acquired through motor autotuning. Please see the		
Parameter	PA group	section of autotuning of synchronous and induction		
		motor under preset speed control mode		
Vector Control Speed	P2 group	Conduct regulation according to actual running		
Loop Parameter		features		
Input Terminal	P4-03	DI3 terminal function	7	
Defined Parameter	P4-04	DI4 terminal function 0	6	
(P4 Group)	F4-04	D14 terminal function 0	U	

7.3 Inspection Running

Under preset speed control mode, A1200 elevator inverter has inspection running mode that has been processed correspondingly according to inspection running characteristics of the elevator. Control process and running curves will be briefly introduced below.

1) The inspection signal of inverter input terminals are enabled. After this signal is enabled, if the inspection signal (P6-16) is set as none zero value, the inverter will be forced to run under the preset speed selected by P6-16.

2) If the inspection speed is selected (P6-16) as non-zero value, and the setting preset speed value is equal to P6-16. If P6-16 is set as 1 and the preset speed 1 is selected for DI input, the inverter will enter the inspection mode even if there is no inspection signal input of input terminals.

With regards to slip test function, semi-automatic autotuning function and other functions that are enabled only under inspection mode, be sure to make the inverter enter the inspection mode before the system starts to running, otherwise these functions will be disabled.

7.3.1 System wiring diagram

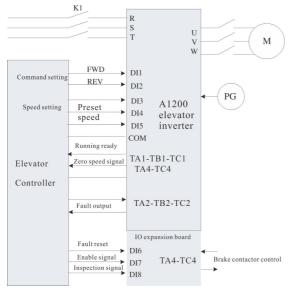
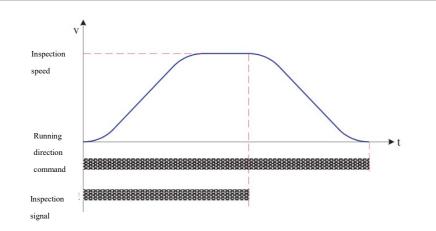



Figure 7-6 Inspection Running Wiring (Set DI8 as inspection signal input)

7.3.2 Parameter Setting and Running Curve Diagram

The main difference between the running sequence under inspection mode and normal mode is the stop process. For example, under the condition that P6-16=2, if elevator receives forward (reverse) command and signals of inspection input terminals, A1200 will run at the target frequency of preset speed 2 and the acceleration time is determined according to corresponding time curve of preset speed 2. During stop process, if inspection input signals are removed firstly, the system speed will decrease to 0 according to the deceleration time set by preset speed 2 until forward or reverse commands are canceled (As shown below, a shorter deceleration time period can be set, such as 1s, for ensuring the elevator can stop quickly).

A1200 Series

The inverter will stop output immediately if the forward or reverse command is canceled during inspection running. See figure 7-8.

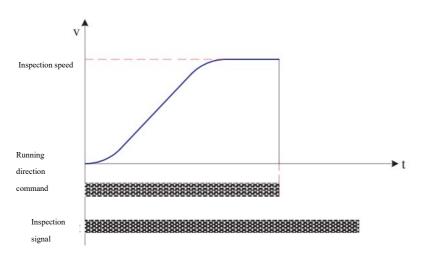


Figure 7-8 Stop Sequence Upon Removal of Direction Command during Inspection Running If the preset speed 2 is adopted for inspection travel, the inspection running frequency is 10Hz and S curve 4 is selected, speed parameters for inspection running are as follows:

Function Code	Name	Setting Value	Default	Remarks
P6-05	Preset speed 2	10.00Hz	0.00Hz	Rated motor speed: 50.00Hz
P6-13	Acceleration/Dec	4	1	
	eleration Time of			
	Preset Speed 2			
P6-16	Inspection Speed	2	0	Preset speed 2 is selected as
				inspection speed
P6-12	Acceleration	2.0s	20.0s	
	Time 4			

P7-13	Deceleration	1.0s	20.0s	This parameter shall be small
	Time 4			enough so as to ensure that the
				speed decreases to the
				minimum value before closing
				the brake.

7.4 Power Failure Emergency Running

When the elevator is in operation, passengers may be trapped in the elevator in case of sudden system power failure.

A1200 elevator inverter adopts two types of power failure emergency running modes: UPS power supply and 48V battery supply

48V battery supply: The main circuit of the inverter adopts 48V battery as power supply while other parts of the elevator adopt UPS power supply(inverter power supply) above 220V as working power. So that the motor can run by battery power supply and requires less power supply. UPS power supply: The inverter adopts UPS to provide power supply for its main circuit and operation in case of power failure.

Below introduces these two kinds of running modes: 48V battery power supply running and UPS power failure emergency running.

7.4.1 Power failure emergency running mode

1. System wiring diagram

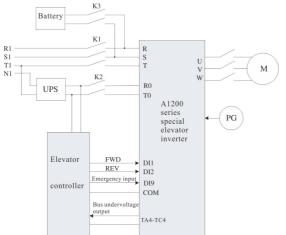
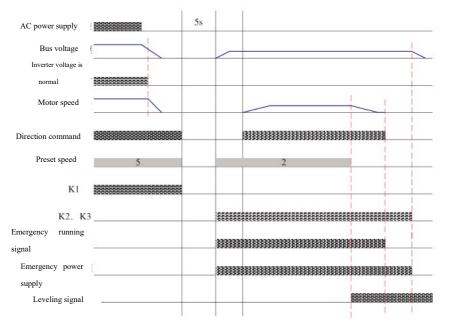
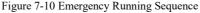


Figure 7-9 Battery Emergency Running Wiring Diagram

Note:

◆ For applying this mode, the inverter must be refitted and shall be equipped with UPS power supply interface R0 and T0.


2. Running sequence


Under the preset speed control mode, see figure 7-9 to conduct inverter wiring and DO2 shall be used as the bus undervoltage output terminal. Preset speed 2 is adopted as emergency running speed. Therefore, following function codes must be set under the preset speed control mode:

Function Code	Name	Setting Value	Default	Remarks
P4-09	DI9 Input	9	0	Emergency input
P5-01	TA4-TC4 Output	8	0	Bus undervoltage

P6-02	Preset Speed 2	2.00Hz	0.00Hz	Rated motor speed: 50.00Hz
P6-10	Preset Speed 2 S	3	1	
	Curve			
P6-17	Power Failure	2	0	Select 48V battery for power
	Emergency			supply
	Running			
P7-08	Acceleration	30.0s	4.0s	Increase the acceleration time to
	Time 3			avoid excessive impulse current

An example of running sequence when the elevator goes up is given below:

Emergency running signal is provided by elevator controller and connected to the inverter through DI terminal. Through this signal, the inverter can judge if it is in emergency running status. Contactor K1, K2 and K3 are controlled by the elevator controller.

3. Attentions

1) Set the battery running speed and battery running acceleration/deceleration time properly according to actual conditions of the elevator. It is recommended to set the acceleration/deceleration above 10s. Running speed of battery is calculated according to the formula:

2) Battery running frequency<(48V-5V)* motor rated frequency/(1.414* rated voltage)

3) Input DC voltage 48V to the main circuit through the battery; use auxiliary power supply, such as UPS as working power supply;

4) It is recommended to set the stable output current of battery greater than the idling current of tractor;

5) The input terminal (DI) of A1200 elevator inverter is used to judge if the inverter is in

emergency running status; at this time, the running speed of the inverter adopts preset speed and its corresponding acceleration/deceleration time is the acceleration/deceleration time of battery; the difference from normal running: During emergency running process, linear acceleration/deceleration is adopted as acceleration/deceleration mode;

6) During battery power supply running, the inverter will not detect the DC bus voltage. Therefore, when opening the brake, make sure the main circuit of the inverter has 48V voltage input;

7) During battery power supply running, the inverter will monitor speed and it will enable fault protection (Err32) in the event that the speed exceeds P6-28--Upper Limit of Power Failure Emergency Running Speed;

8) During emergency running, avoid running with load. Therefore, external controller shall select running with balanced load or brake load. With the function of "light load running and output", A1200 elevator inverter will output or shut down this signal according to load during normal running. Based on this signal, external controller can determine the emergency running direction.

9) During the operation process of power failure emergency running, attentions must be paid to the working sequence of contactors connected to the main power supply of the inverter and contactor connected to UPS. These two kinds of contactor can not be closed at the same time to avoid damages to UPS and battery.

7.4.2 UPS power failure emergency running mode

1. System wiring diagram

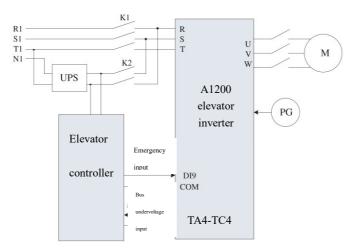


Figure 7-11 UPS Emergency Running Wiring Diagram

2. Running sequence

When the inverter adopts UPS emergency running mode under the preset speed control mode. According to the figure above, configure:

1) Wiring of "emergency input" and "bus undervoltage output";

2) Wiring between UPS and inverter under power failure status.

By taking preset speed 2 as emergency running speed, following function codes are required to be set:

Function Code	Name	Setting	Default	Remarks	
		Value			

P4-09	DI9 Input	9	0	Emergency input
P5-01	TA4-TC4 Output	8	0	Bus undervoltage
P6-02	Preset Speed 2	2.00Hz	0.00Hz	Rated motor speed: 50.00Hz
P6-10	Preset Speed 2 S	3	1	
	Curve			
P6-17	Power Failure	1	0	Adopt UPS power supply
	Emergency Running			
P7-08	Acceleration Time 3	30.0s	4.0s	Increase the acceleration time
				to avoid excessive impulse
				current

The operation sequence of UPS emergency running is identical to that of 48V emergency running. Similarly, UPS emergency running signal is provided by the elevator controller and connected to the inverter through DI terminal so the inverter can judge if it is in emergency running. Contactor K1 and K2 are controlled by elevator controller.

7.5 Analog Weighing Debugging

In A1200 elevator inverter system, the forward command represents that the elevator will go up while reverse command represents that the elevator will go down. Based on this principle, the following analog weighing method is discussed.

7.5.1 Parameter Setting Method

If AI1 is adopted as pre-torque input channel, then set the parameter:

P3-09=2;

P3-10=elevator's balance coefficient.

Under idling car load, switch parameters on operation panel to check the sampling values (PU-17) and input it into P3-18; similarly, under full load, input the sampling values of AII(PU-17) into P3-19. Two parameters above also can be determined through weighing autotuning.

Finally, regulate P3-11 to select appropriate compensation. P3-11 can be set as about 0.6 generally. 7.5.2 Debugging method for incorrect balance coefficient

On some situations, when the idling compensation is correct, the car load increase effect will be poor due to incorrect balance coefficient of the elevator.

If the balance coefficient is unclear, idling and full load compensation methods can be adopted to determine the balance coefficient (P3-10) and gain (P3-11) to ensure uniform system compensation effect.

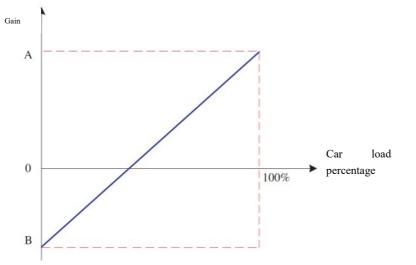


Figure 7-12 Compensation Curve

As shown in figure 7-12, firstly set P3-10 as 50% and conduct idling autotuning. Then, make the elevator go up and down and adjust P3-11 to observe if there exists motor slip phenomenon upon opening of brake. If there is no motor slip phenomenon and overtorque condition whether the elevator goes up or down under the motor torque compensation, record P3-11 as B(P3-11=B); then, fill the car with full load, conduct full-load autotuning , make the elevator go up and down and then adjust P3-11. Similarly, if compensation is appropriate, then P3-11=A.

As can be seen from the figure, the oblique line is the correct compensation curve of this elevator and the crosspoint of this oblique line and the horizontal shaft is the balance compensation point of this elevator that corresponds to the elevator's balance coefficient. Based on the test, it can be calculated that:

P3-10=100*B/(A+B); P3-11=(A+B)/2;

For example, through idling test, it can be acquired that B=0.7; under full-load test, A=0.4; therefore, corresponding balance coefficient is set as P3-10=36.4%, P3-11=0.55.

7.5.3 Debugging method for reverse running direction

If it has been set FWD corresponds to going down and REV corresponds to going up on the field, the method said above will make the compensation worse. The reason is that the direction is opposite. Under this condition, firstly record the sampling value P3-18 and P3-19 and the balacne coefficient P3-10 under idling and full load conditions.

For example: P3-18=X; P3-19=Y; P3-10=Z; then setting parameters as follows to solve the problem:

P3-19=X; P3-18=Y; P3-10=100-Z.

7.6 Sensorless Debugging Method

7.6.1 Basic parameter setting

Parameter Description	Parameter	Setting Value
Encoder Type	P1-00	0
Weighing Mode	P3-09	5
Brake Opening Time (Zero	P3-04	>0.5s

Speed Holding Time)	
= (0 X	

7.6.2 Instruction on debugging

Gradually increase the zero servo current factor (PD-05) until there is almost no slip phenomenon and no shaking of motor after the brake is opened;

During debugging, user can observe the slip condition under zero servo through parameter PU-20 and conduct regulation until the slip is not obvious;

If the there exists obvious oscillation when the zero servo speed loop TI (PD-07) is less than 1.00, increase the zero servo current coefficient (PD-05);

Zero servo speed loop KP (PD-06) can be remained unchanged basically and shall not be excessive, otherwise it may result motor oscillation.

Chapter 8 Troubleshooting

8.1 Faults and Troubleshooting

A1200 elevator inverter has more than 50 warning messages and protection functions. In case of abnormality, it will enable protection and its output stops; the fault relay contact is on and fault code is displayed on the inverter display panel. Before seeking service, user can conduct examination by themselves according to this section to analyze fault causes and find solutions. If the fault still exists, please contact the agent from whom you purchase the inverter or directly contact our company for service.

Fault	Fault Description	Possible Causes	Troubleshooting
code			
Err02	Acceleration	1. Main circuit output grounded or	1. Check the output side of controller and the
	overcurrent	short circuited	running contactor for abnormality
		2. If motor parameter have been	2. Check the power cables for surface
		autotuned	damages and possibility of short circuit
		3. Large load	between the power cable and the group.
		4. Incorrect encoder signal	Check if connection is reliable
		5. If UPS running feedback signal	3. Check if copper wire of the wiring terminal
		is normal	on the motor side is on the ground
			4. Check if there short circuit or grounding
			wire inside the motor
			5. Check if star-delta contactor results in

• Note: Err33, Err16 and Err17 can not be reset and reset them after power cut

Err03	Deceleration	1. Main circuit output grounded or	output short circuit of the controller
	overcurrent	short circuited	6. Check if motor parameters are consistent
		2. If motor parameter have been	with the nameplate
		tuned	7. Conduct motor parameter autotuning again
		3. Large load	8. Check if the brake is opened continuously
		4. The deceleration curve is too	before occurrence of fault
		abrupt	8. Check if any machine part is stuck
		5. Incorrect encoder signal	9. Check if the balance coefficient is correct
			10. Check if relevant wiring of the encoder is
			correct and reliable. Induction motor can
			conduct open-loop operation and compare
			current to judge if the encoder works
			normally
Err04	Constant	1. Main circuit output grounded or	11. Check if the pulse count per rotation of
	overcurrent	short circuited	the encoder is set properly
		2. If motor parameter have been	12. Check if encoder signals are interfered.
		tuned	13. Check if the encode cables are aligned
		3. Large load	separately, if the wiring distance is too long;
		4. Large encoder interference	if the shielded layer is grounded with one end.
			14. Check if the encoder is installed reliably,
			if the rotary shaft is connected to the motor
			shaft reliably, if it runs stably at high speed
			15. Check if UPS feedback is enabled under
			non UPS running status. (Err02)
			16. Check if the acceleration/deceleration
			speed is too large (Err02 and Err03)
Err05	Acceleration	1. Input voltage is too high	1. Adjust input power; observe if the bus
	overvoltage	2. Serious elevator slip	voltage is normal and if it rises too fast during
		3. Braking resistance is too large	running
		or braking units have fault	2. Check the balance coefficient
		4. Acceleration curve is too abrupt	3. Select appropriate braking resistor; refer to
Err06	Deceleration	1. Input voltage is too high	the reference parameter table of braking
	overvoltage	2. Braking resistor is too large is	resistor of Chapter 3 to observe if the
		too large or braking units have	resistance is too large
		fault	4. Check braking resistor wiring for damages
		3. Acceleration curve is too abrupt	and grounding wire. Check if the wiring is
Err07	Constant	1. Input voltage is too high	reliable.
	overcurrent	2. Braking resistor is too large is	
		too large or braking units have	
		fault	
Err08	Control power	1. Input voltage is too high	1. Adjust input power
	supply fault	2. Driving control board runs	2. Please contact the agent or manufacturer
		abnormally	
Err09	Undervoltage fault	1. Power failure at the moment of	1. Troubleshooting external power supply

	1	1	
		power input	fault; check if the power supply is
		2. Input voltage is too low	disconnected during running
		3. Driving control board runs	2. Check if all power input cables are
		abnormally	connected reliably
			3. Please contact the agent or manufacturer
Err10	Inverter overload	1. Brake circuit has abnormality	1. Check the brake circuit and power supply
		2. The load is too large	2. Reduce load
		3. If the encoder feedback signals	3. Check if the encoder feedback signals and
		are normal	setting are correct and if the initial angle of
		4. If motor parameters are normal	the synchronous motor encoder is correct
		5. Check the motor power wires	4. Check relevant motor parameters and
			conduct autotuning
			5. Check relevant power cables of motor (see
			troubleshooting of Err02)
Err12	Input phase loss	1. Input power supply is	1. Check if the 3-phase power supply of the
	protection	asymmetric	input side is balanced, if the power supply
		2. Driving control board has	voltage is normal. Adjust the input power
		abnormality	supply.
			2. Please contact the agent or manufacturer
Err13	Output phase loss	1. Output wiring of main circuit is	1. Check wiring
	protection	loose	2. Check if the contactor of output side is
		2. Motor damages	normal
			3. Troubleshooting motor fault
Err14	Radiator	1. Ambient temperature is too	1. Lower the ambient temperature
	overheating	high	2. Clean the air duct
		2. Fan fault	3. Replace the fan
		3. Air duct is blocked	4. Check if the installation distance of the
			controller meets the requirements of Chapter
			3
Err15	External fault or	1. Elevator controller fault	1. Check if the elevator controller works
	output side	2. Braking output side is short	normally
	abnormality	circuited	2. Check if the braking resistance and the
		3. UVW output side works	wiring of braking units are connect and
		abnormally	ensure there is no short circuit
			3. Check if the main contactor works
			normally
			4. Please contact the manufacturer or the
			agent
Err16	Current control	1. Excitation current deviation is	1. Check the encoder circuit
	fault	too large	2. Output air switch is switched off
		2. Torque current deviation is too	3. Current loop parameter is too small
		large	4. The zero point position is incorrect and
		3. Exceeding the torque limitation	conduct autotuning again

	1		
Err17	Encoder reference	1. Deviation between Z signal	1. Check if the encoder works normally
	signal abnormality	reach and the absolute position is	2. Check if the encoder wiring is reliable and
		too large	normal
		2. The deviation between the	3. Check if the PG card wiring is correct
		absolute position angle and	4. Check if the control cabinet and master are
		Accumulated angles is too large	grounded properly
Err18	Current detection	Driving control board fault	Please contact the manufacturer or the agent
	fault		
Err19	Motor autotuning	1. Motor can not run normally	1. Input motor parameters correctly
	fault	2. Parameter autotuning overtime	2. Check if the motor wiring and contactor of
		3. Rotary encoder of synchronous	output side have phase loss
		motor has abnormality	3. Check the wiring of rotary encoder to
			confirm if the pulse count per rotation is
			correct
			4. Under autotuning without load, check if the
			brake is opened
			5. During autotuning for synchronous motor
			with a load, if the inspection running button is
			released before autotuning is completed.
Err20	Speed feedback	1. AB signals are lost during	1, 4, 5, 7, 8, 10, 11, 13, 14, 19: Check signal
	error and fault	autotuning	wiring of all phases of the encoder;
		3: Motor wires are connected	3: Please exchange the sequence of any two
		inversely	phases of 3 phase UVW of the motor;
		4: Z signal 5 can not be detected	9: If the synchronous motor P1-00/12/25 is
		during autotuning process:	set correctly;
		SIN_COS encoder CD is	12: Check if any mechanical parts are stuck
		disconnected	during running; check if the brake is opened;
		7: UVW disconnection of UVW	55: Check the earthing condition and deal
		encoder	with interference.
		8: Angle deviation is too large	
		9: Overspeed or the speed	
		deviation is too large	
		10, 11: AB or CD signals of	
		SIN_COS encoder are interfered	
		12: Torque limit, the testing speed	
		is 0	
		13: AB signals lost during running	
		14: Z signals lost during running	
		19: AB analog signal is	
		disconnected during low-speed	
		running process	
		55: CD signals error or Z signal	
		error caused by serious	
		interference during autotuning	
		 9: Overspeed or the speed deviation is too large 10, 11: AB or CD signals of SIN_COS encoder are interfered 12: Torque limit, the testing speed is 0 13: AB signals lost during running 14: Z signals lost during running 19: AB analog signal is disconnected during low-speed running process 55: CD signals error or Z signal error caused by serious 	

	1		
Err21	Parameter setting	Maximum frequency is lower than	Check if the maximum frequency is lower
	error	rated frequency	than the rated frequency
Err23	Protection of short	Short circuit between output and	1. Check if there exists short circuit between
	circuit to earth	the ground	the motor or contactor of output side and the
			ground
			2. Please contact the agent or manufacturer
Err24	RTC clock fault	101: Time information	101: Replace the clock battery; replace the
		abnormality of control board	master control panel
Err25	Data storage fault	101, 102: Data storage fault of	101, 102: Please contact the agent or
		master control panel	manufacturer
Err32	Emergency	The speed exceeds the setting	1. Check if the battery voltage is normal
	running overspeed	value during battery running	2. Check if wires are loose
		(P6-28)	3. Check if P6-28 is set too small
Err33	Overspeed fault	The running speed of the inverter	1. Check if the motor power is matched
		exceeds the overspeed judgment	2. Check if the elevator load is too heavy
		level and the average	3. Check if the rotary encoder signals are
		Accumulated time is greater than	correct
		overspeed judgment time	4. Check if the parameter PC-09 and PC-10
			are set too harsh.
Err34	Speed deviation is	The inverter feedback frequency	1. Check if the motor power is matched
	too large	and the setting frequency exceed	2. Check if the elevator load is too heavy
		the setting range, and the lasting	3. Check if the rotary encoder signals are
		time is greater than the setting	correct
		time	4. Check if the parameter PC-12 and PC-13
			are set too harsh.
Err36	Contactor fault	1. Contactor feedback signals are	1. Check if the contact and feedback contact
		enabled before the contactor is	are normal
		started	2. Check if functions of inverter input point
		2. There is no feedback signal	are set correctly
		before the contactor is closed	3. Check if the control circuit power supply of
			contactor are normal
Err37	Brake fault	Brake output is inconsistent with	1. Check if the brake coil and feedback
		feedback signals, lasting for more	contact are normal
		than 2s	2. Confirm the signal characteristics of
			feedback contact (normally open and
			normally closed)
			3. Check if the control circuit power supply of
			the brake coil is normal
Err38	Contact adhesion	During stop status, feedback	1. Check wiring
		signal of brake or running	2. Check the brake and running contactor
		contactor is enabled continuously	
		for more than 2.5s	
Err39	Motor overheating	Motor overheating signal is	1. Check if the motor runs correctly and if
		enabled	there exists motor damage
		l	•

A1200 Series

			2. Improve the radiation conditions of the
			motor
Err40	Elevator running	The setting running time of the	1. The elevator has been used for a long time,
	conditions do not	elevator is out	and maintenance and service are required.
	meet requirement		
Err55	DSP	Abnormality of wiring of drive	1. Check the cables between the driver board
	communication	board and control board	and logic board
	protection		

8.2 Common Faults and Handling Methods

The inverter may have following faults during running. Please analyze fault simply according to following methods:

1. No display after power-on:

1) Use multimeter to check if the input power of the inverter is consistent with the rated voltage of the inverter. In case of power supply fault, check and troubleshoot the fault.

2) Check if the 3-phase rectifier bridge is intact. If the rectifier bridge breaks, please seek for professional service.

3) Check if the CHARGE indicator is on. If it is off, the fault generally occurs at the rectifier bridge or buffer resistance. If this indicator is on, the fault may occur at the switch power supply. Please seek for professional service.

2. Power supply air switch tripping after power-on:

1) Check if input power supply are grounded or short circuited, and troubleshoot the fault.

2) Check if the rectifier bridge has been broken down. In case of damages, please seek for professional service.

3. The motor doesn't run after the inverter runs:

1) Check if there exists balanced 3-phase output between U, V and W. If any, there exists damages of motor cables or the motor or the motor rotor is blocked due to mechanical causes. Please troubleshoot the fault.

2) If there is output but the output is unbalanced between 3-phase, the inverter drive board or output module may have damages. Please seek for professional services.

3) If there is no voltage output, the drive board or output module may be damaged, so please seek for professional service.

4. After power on, the inverter displays normally but the power supply air switch trips after the inverter runs:

1) Check if there is short circuit between phases of output modules. If any, please seek for professional service.

2) Check if there is short circuit or grounding in motor cables. If any, please troubleshoot it.

3) If tripping happens occasionally and motor is located far away from the inverter, output AC reactor shall be installed.

Chapter 9 Specification

9.1 Major Parameters of A1200 Series Inverter

A1200 Model	Input Voltage	Power	Input Current	Output Current	Applicable
A1200 Widdei	input vonage			-	
		Capacity(kVA)	(A)	(A)	Motor (kW)
A1200-2R2-43A	3-phase 380V	4.0	6.5	5.1	2.2
A1200-3R7-43A		5.9	10.5	9.0	3.7
A1200-5R5-43A	Range:	8.9	14.8	13.0	5.5
A1200-7R5-43A	-15%-20%	11.0	20.5	18.0	7.5
A1200-011-43A		17.0	29.0	27.0	11.0
A1200-015-43A		21.0	36.0	33.0	15.0
A1200-018-43A		24.0	41.0	39.0	18.5
A1200-022-43A		30.0	49.5	48.0	22.0
A1200-030-43A		40.0	62.0	60.0	30.0
A1200-037-43A		57.0	77.0	75.0	37.0
A1200-045-43A		69.0	93.0	91.0	45.0

Table 9.1 Major Parameters of A1200 Inverter

9.2 Technical Specification

Table 9.2 Technical Specification of A1200 Inverter

	Item	Specification		
Carrier frequency		2kHz-16kHz; Automatically adjust the carrier		
		frequency according to load characteristics		
	Input frequency resolution	Digital setting: 0.01Hz		
		Analog setting: Maximum frequency $\times 0.1\%$		
	Output frequency	Digital setting: Maximum frequency $\times \pm 0.01\%$		
General	accuracy	Analog setting: Maximum frequency $ imes \pm 0.01\%$		
Specification	Control mode	Closed-loop vector control (SVC)/ open-loop		
		vector control (VC)/VF control		
	Start torque	0.5Hz/180% (SVC); 0Hz/200% (VC)		
	Speed regulation range	1:100(SVC) 1:1000(VC) 1:50 (V/F)		
	Steady speed accuracy	$\pm 0.5\%$ (SVC) $\pm 0.05\%$ (VC)		
	Overload capacity	150% rated current for 60s; 180% rated current for		
		1s.		
Motor autotuning		Autotuning for a motor with load; autotuning for a		
		motor without load		
	Acceleration/deceleration	Linear or S curve acceleration/deceleration mode;		
	curve	four groups of acceleration/deceleration time and		

A1200 Series

		four groups of S curve setting; multiple				
		combination				
	Inspection control	Specified by any preset speed				
-	Preset speed running	Running of maximum 8 preset speeds is realized				
	Automatic voltage	In case of voltage change of power grid, it can				
	regulation (AVR)	automatically keep output voltage constant				
	.ED display Setting frequency, output frequency,					
		voltage, output current and other parameters can be displayedWith LED operational panel, rapid replication of parameters can be realized				
	Parameter copy					
	Protection function	40 kinds of protection, such as electric short				
		circuit detection, input and output phase loss				
		protection, overcurrent protection, overvoltage				
		protection, undervoltage protection.				
	Keys locking and function	n Lock all or part of keys, and define the function of				
		some keys to avoid misoperation				
	Self-check of peripheral	Conduct safety detection to peripheral equipment				
	equipment after power on	after power-on, such as earthing and short circuit.				
	Power failure emergency	Emergency running scheme is simple and				
	running	convenient				
	Overspeed protection	With elevator overspeed protection function;				
		multiple action options				
	Speed deviation judgment	nt With speed deviation detection function; find				
Special		potential risks of the elevator in a timely manner				
	Forced speed change	With the function of forced speed change				
Features	function	detection; effectively prevent the elevator from				
		rushing to the top or collapsing to the bottom				
	Direct stop function	Combined with the direct stop command, this				
		function can make the elevator run without crawl				
		phenomenon				
	Elevator temperature	Judge the motor temperature timely and eliminate				
	detection	safety risks				
	Start compensation	Three types of start torque compensation modes:				
		Analog, digital, no-weighing				
	Timer control	Timer control function can be realized				
		conveniently				
	Running command	Two channels: Operation panel setting, control				
Input and	channel	terminal setting				
Output	Frequency source	Four kinds of frequency source: numeric setting,				
Characteristics		preset speed setting, analog voltage 1 setting and				
		analog voltage 2 setting				
	Input terminal	10 numeric input terminals. One of them can be				

		used as high-speed pulse input. Compatible with PNP		
		2 analog input terminals. One of them can be used		
		as voltage input, another can be used as voltage or current input.		
	Output terminal	4 relay output terminal		
		1 analog output terminal, 0/4-20mA or 0/2-10V		
		optional respectively. Setting frequency, output		
		frequency and physical quantity output can be		
		realized.		
Environment	Altitude	Lower than 1000m (if above 1000m, derating 1%		
		per 100m)		
	Ambient temperature	-10°C-+40°C (ambient temperature is within 40°C		
		-50°C, it must be derated)		
	Humidity	Lower than 95%RH, no water condenses		
	Vibration	Less than 5.9m/s ² (0.6g)		
	Storage temperature	-20°C-+60°C		

Appendix 1 Braking Unit Options Guide

With regards to A1200 elevator inverter, inverter models with power below 30kW(30kW inclusive) have built-in braking units. Users are only required to connect it to external braking resistor. Inverter models with power above 30kW shall be configured with external braking units and braking resistor.

Inverter	Applicable	Maximum	Minimum Braking	Power (W)	Braking
Model	Motor (kW)	Braking	Resistance(Ω)		Unit
		Resistance (Ω)			
A1200-2R2-4	2.2	290	230	600	
3A					
A1200-3R7-4	3.7	170	135	1100	
3A					
A1200-5R5-4	5.5	115	90	1600	
3A					
A1200-7R5-4	7.5	85	65	2500	
3A					
A1200-011-4	11	55	43	3500	
3A					
A1200-015-4	15	43	35	4500	
3A					
A1200-018-4	18.5	34	25	5500	
3A					
A1200-022-4	22	24	22	6500	
3A					
A1200-030-4	30	20	16	9000	
3A					
A1200-037-4	37	16	13	11000	CDBR-37
3A					44
A1200-045-4	45	14	11	13500	CDBR-45
3A					44

List of Braking Units of A1200 Series Special Elevator Inverter